In-situ self-assembled 3D zincophilic heterogeneous metal layer on zinc metal surface for dendrite-free aqueous zinc-ion batteries

Zhuchan Zhang^{a,b}, Ruxing Wang^b, Jianwei Hu^b, Mengjun Li^b, Kangli Wang^{a,*}, Kai

Jiang^{a,*}

a State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

b School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

E-mail: <u>klwang@hust.edu.cn</u> E-mail: <u>kjiang@hust.edu.cn</u>

Figure S1. Full XPS spectra (a) and high-resolution XPS spectra of Sn 3d (b) and Cl 2p (c) for the Zn and Zn/Sn anodes.

Figure S2. (a) SEM images of Zn/Sn and the corresponding EDS mapping of the Zn/Sn anode. EDS content analysis of Zn and Sn elements (b).

Figure S3. Cross-section SEM image and the corresponding EDS mapping of Zn/Sn anode.

Figure S4. Detailed voltage profiles of above symmetric cells at specific cycling times of 101^{th} at a current density of 1 mA cm⁻² for 1 h. Zinc stripping/plating in Zn and Zn/Sn symmetric cells at 5 mA cm⁻² for 0.4 h (b). (c) The nucleation overpotential of the Zn and Zn/Sn symmetric cells at 5 mA cm⁻² and 2 mA h cm⁻². Stripping/plating performance of Zn/Sn and Zn symmetric cells with 4 mAh cm⁻² at 10 mA cm⁻² (d).

Figure S5. Contact angle measurements of Zn and Zn/Sn anode.

Table S1 The performance comparison of the similar anode materials reported in literatures.

Anode materials	Voltage hysteresis	Lifespan	Ref.
rGO coated zinc foil	$\approx 20 \text{ mV} (1 \text{ mA cm}^{-2})$	300 h (1 mA cm ⁻² , 1	1
		mAh cm ⁻²)	

Carbon fiber	30 mV (1 mA cm-2)	350 h (1 mA cm ⁻² , 1	2
framework		mAh cm ⁻²)	
Ultrathin TiO ₂ -coated	57 mV (1 mA cm ⁻²)	150 h (1 mA cm ⁻² , 1	3
zinc anode		$mAh cm^{-2}$)	
CNT scaffold-	$36 \text{ mV} (0.1 \text{ mA cm}^{-2})$	1800 h (0.1 mA cm ⁻² ,	4
stabilized Zn anodes		$0.5 \text{ mAh cm}^{-2})$	
Nanoporous CaCO ₃ -	80 mV (0.25 mA	836 h (0.25 mA cm ⁻² ,	5
coated zinc anode	cm ⁻²)	$0.05 \text{ mAh cm}^{-2})$	
Kaolin coated zinc	\approx 70 mV (4.4 mA cm ⁻	800 h (4.4 mA cm ⁻² ,	6
foil	²)	1.1 mAh cm ⁻²)	
Polyamide layer/zinc	100 mV (0.5 mA cm ⁻	8000 h (0.5 mA cm ⁻² ,	7
foil	²)	0.25 mAh cm ⁻²)	
PAM/Zinc plated	$25 \text{ mV} (0.2 \text{ mA cm}^{-2})$	350 h (0.2 mA cm ⁻² , 1	8
copper mesh		$mAh cm^{-2}$)	
Ti ₃ C ₂ T _x MXene@Zn	$83 \text{ mV} (1 \text{ mA cm}^{-2})$	84 h (1 mA cm ⁻² , 1	9
Paper		$mAh cm^{-2}$)	
Al ₂ O ₃ -coated zinc	$36.5 \text{ mV} (1 \text{ mA cm}^{-2})$	500 h (1 mA cm ⁻² , 1	10
anode		$mAh cm^{-2}$)	
3D flexible carbon	$27 \text{ mV} (2 \text{ mA cm}^{-2})$	200 h (1 mA cm ⁻² , 2	11
nanotubes		$mAh cm^{-2}$)	
Eutectic Zn ₈₈ Al ₁₂	$\approx 20 \text{ mV}$ (0.5 mA	2000 h (0.5 mA cm ⁻² ,	12
alloys	cm ⁻²)	0.5 mAh cm^{-2})	
3D Zn/Sn anode	$30 \text{ mV} (1 \text{ mA cm}^{-2})$	900 h (1 mA cm ⁻² , 1	Our work
		mAh cm ⁻²)	

Figure S6. CE of Zn plating/stripping in the Zn-Cu and Zn/Sn-Cu half-cells at 0.5 mA cm⁻².

Figure S7. The nucleation overpotential on Cu matrix for Zn and Zn/Sn electrode at a different density of 0.5 mA cm⁻²(a), 1 mA cm⁻²(b), 2.0 mA cm⁻²(c), and 5.0 mA cm⁻²(d).

Figure S8. SEM images of Zn (a) and Zn/Sn (b) deposition at 1 mA cm⁻¹ for 50 cycles. Electrochemical impedance spectroscopy measurements of Zn (c) and Zn/Sn (d) symmetric cells after different numbers of cycles and the corresponding fitting

data (e-f).

Figure S9. The optical microscopy images of Zn^{2+} ions deposition morphology on bare Zn(a) and (b) Zn/Sn symmetrical cells at a current density of 1 mA cm⁻².

Figure S10. XRD patterns of cycled Zn and Zn/Sn electrodes in 2 M ZnSO₄.

Figure S11. Tafel curves of bare Zn and Zn/Sn in 2 M ZnSO₄ electrolyte.

Figure S12. LSV curves of Zn and Zn/Sn electrode in 1 M aqueous Na_2SO_4 electrolyte at a scan rate of 5 mV s⁻¹.

Figure S13. XRD pattern (a) and SEM images (b-c) of CaV_6O_{16} ·3H₂O obtained in a similar way as reported¹³.

Figure S14. EIS spectra of Zn-CaVO and Zn/Sn-CaVO cells before the test and after 5th cycles.

Figure S15. (a) Cycling performance of Zn-CaVO and Zn/Sn-CaVO cells at a current density of 50 mA g⁻¹. (b) The charge and discharge curve of the last lap of Zn-CaVO cell.

Figure S16. Optical image of bare Zn (a) and Zn/Sn (b) electrodes electrode after 800 cycles in full battery.

References

- A. Xia, X. Pu, Y. Tao, H. Liu and Y. Wang, *Appl. Surf. Sci.*, 2019, 481, 852-859.
- W. Dong, J.-L. Shi, T.-S. Wang, Y.-X. Yin, C.-R. Wang and Y.-G. Guo, *RSC Adv.*, 2018, 8, 19157-19163.
- K. Zhao, C. Wang, Y. Yu, M. Yan, Q. Wei, P. He, Y. Dong, Z. Zhang, X. Wang and L. Mai, *Adv. Mater. Interfaces*, 2018, 5, 1800848.

- L. Dong, W. Yang, W. Yang, H. Tian, Y. Huang, X. Wang, C. Xu, C. Wang, F. Kang and G. Wang, *Chem. Eng. J.*, 2020, **384**, 123355.
- L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo, J. Liu, W. Liang and C. Zhi, *Adv. Energy Mater.*, 2018, 8, 1801090.
- C. Deng, X. Xie, J. Han, Y. Tang, J. Gao, C. Liu, X. Shi, J. Zhou and S. Liang, *Adv. Funct. Mater.*, 2020, **30**, 2000599.
- Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li, Y. Zhang, C. Wang and G. Cui, *Energy Environ. Sci.*, 2019, **12**, 1938-1949.
- Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang, X. Ji and H. Wang, *Angew. Chem.*, 2019, 131, 15988-15994.
- Y. Tian, Y. An, C. Wei, B. Xi, S. Xiong, J. Feng and Y. Qian, ACS Nano, 2019, 13, 11676-11685.
- H. He, H. Tong, X. Song, X. Song and J. Liu, J. Mater. Chem. A, 2020, 8, 7836-7846.
- Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang, D. Zheng, Y. Tong and X. Lu, *Adv. Mater.*, 2019, **31**, 1903675.
- S.-B. Wang, Q. Ran, R.-Q. Yao, H. Shi, Z. Wen, M. Zhao, X.-Y. Lang and Q. Jiang, *Nat. Commun.*, 2020, **11**, 1634.
- Y. Zhang, F. Wan, S. Huang, S. Wang, Z. Niu and J. Chen, *Nat. Commun.*, 2020, 11, 2199.