Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

A "micropores & active species protection" strategy for the preparation of high-performance Fe/S/N-composited porous carbon catalyst with efficient oxygen reduction reaction and zinc-air batteries

Zuoxu Xiao, Chaoyi Yang, Shanshan Liu, Wei Yan, Fuling Wang, Xue Liu, Tianle Yang, Xiyou Li^{*}, Yanli Chen^{*}

College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China

Characterization

FESEM images were observed on field-emission scanning electron microscope (SEM, Quant 250FEG). High-resolution transmission electron microscopy images were collected at an acceleration voltage of 200 kV (TEM, JEM-2100F). X-ray diffraction patterns were performed on a Rigaku UItima IV X-Ray Diffractometer. Raman spectra were carried out on a laser Raman microscope system (HORIBA Evolution Raman scope) with the excitation wavelength of 532 nm. The N₂ adsorption-desorption isothermal curve and the BET surface area were calculated via MicroASAP2020 at 77 K. XPS was measured by Thermo ESCALAB 250 surface analysis system.

Electrochemical measurements

The electrochemical measurements were evaluated using a CHI660E electrochemical work station in a standard three-electrode setup with a glass carbon electrode (GC, diameter of 5 mm) loaded with the catalysts was used as the working electrode. The procedure for the preparation of a working electrode was as following: 5 mg of the catalyst powder was dispersed in 800 μ L of absolute ethanol and 30 μ L of Nafion (5 wt%, Sigma-Aldrich) to obtain a homogeneous ink under ultrasonication, then 10 μ L of the ink was slightly dropped on the glassy carbon electrode. For ORR tests, cyclic voltammetry (CV) curves were tested in a N₂-saturated or O₂-saturated 0.1 M KOH

electrolyte with a scan rate of 50 mV s⁻¹, respectively. RDE/RRDE tests were measured in O_2 -saturated 0.1 M KOH electrolyte at 10 mV s⁻¹, respectively.

Zinc-air battery tests:

The measurements of zinc-air batteries were evaluated under ambient conditions. A polished zinc plate and 6.0 M KOH solution were used as anode and electrolyte, respectively. The cathode was prepared by loading catalysts on the carbon paper (catalyst loading amount of 1.0 mg cm⁻²).

Fig. S1. SEM images of FeTPP-MP@PTh-900 used in the EDS mapping area revealing the

elemental distribution of C, N, Fe, O and S.

Fig. S2. SEM images of FeTPP-MP-900 used in the EDS mapping area revealing the elemental

distribution of C, N, Fe and O.

Fig. S3. Raman spectra of FeTPP-MP-900, FeTPP-MP@PTh-900 and FeTPP-MP@2PTh-900.

Fig. S4. N₂ adsorption/desorption isotherm plots of precursors (FeTPP-MP, FeTPP-MP@PTh and FeTPP-MP@2PTh) and catalysts (FeTPP-MP-900, FeTPP-MP@PTh-900 and FeTPP-MP@2PTh-900).

Fig. S5. Nyquist plots of FeTPP-MP-900, FeTPP-MP@PTh-900 and FeTPP-MP@2PTh-900 catalysts-modified electrodes in 0.1 M KOH solution in the frequency range of 0.1-10000 Hz, respectively, (Inset: corresponding equivalent circuit).

Fig. S6. Cyclic voltammograms (CV) at various scan rates of (a) FeTPP-MP-900, (b) FeTPP-MP@PTh-900, (c) FeTPP-MP@2PTh-900 in 0.1 M KOH solution; (d) Plots of the capacitive currents as a function of scan rate for samples as well as the double-layer capacitance values for samples.

Fig. S7. Upon the addition of 3 M methanol in O_2 -saturated 0.1 M KOH solution with the rotation speed of 1600 rpm.

Fig. S8. CV curves of FeTPP-MP-900, FeTPP-MP@PTh-900 and FeTPP-MP@2PTh-900 in O₂-saturated (solid lines) and N₂-saturated (dot lines) 0.5 M H₂SO₄ at 50 mV s⁻¹, respectively.

Catalyst	E_{onset} / V	$E_{1/2}/V$	Reference
FeTPP-MP@PTh-900	0.96	0.89	This Work
FN ₃ SG	0.99	0.80	Carbon. 2019, 142: 1-12
Cu-Fe-N-C	0.97	0.86	Appl. Catal. B-Environ. 2019, 242: 209-217
Fe-N-HMCTs	0.99	0.87	Adv. Funt. Mater. 2021, 31: 2009197
Fe ₃ C-FeN/NC-2	0.95	0.80	J. Mater. Chem. A 2021, 9: 6831- 6840
Zigzag-type-GO	0.96	0.82	Adv. Mater. 2018, 30: 3819-3828
Fe@N-Go	0.98	0.85	Nano Res. 2020, 11: 2217-2228.
Fe SA-NSC-900	0.94	0.86	ACS Energy Lett. 2021, 6: 379- 386.

 Table S1. The electrocatalytic activities of the recently reported catalysts for ORR in 0.1 M KOH.

E _{onset} / V	E _{1/2} /V	Reference
0.80	0.75	This Work
0.95	0.00	Nano Energy 2020, 72:
0.85	0.69	104670
0.85	0.79	J. Catal. 2019, 370: 130-137
0.961	0.73	ACS Catal. 2017, 7: 1655-
0.861		1663
0.85	0.75	Small 2020, 16: 2006178
0.04	0.70	J. Am. Chem. Soc. 2019,
0.84	0.70	141: 20118-20126
0.00	0.50	J. Colloid InterfaceSci. 2019,
0.80	0.59	544: 178-187
0.01	0.50	Appl. Catal. B-Environ.
0.91	0.73	2021, 280: 119411
	E _{onset} / V 0.80 0.85 0.85 0.861 0.85 0.84 0.80 0.91	E_{onset}/V $E_{1/2}/V$ 0.800.750.850.690.850.790.8610.730.850.750.840.700.800.590.910.73

Table S2. The electrocatalytic activities of the recently reported catalysts for ORR in 0.5 M H_2SO_4 .