Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Hierarchical three-dimensional copper selenide nanocubes microelectrodes for improved carbon dioxide reduction reaction

Rajasekaran Elakkiya and Govindhan Maduraiveeran*

Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu-603 203, India

*Corresponding Author: E-mail: maduraig@srmist.edu.in

Catalyst	Potential (V)	R1 (ohm)	R2 (ohm)	C (mF)
CuSe NCs-A	1.2	12.12	165.7	1.20
	1.4	13.2	20.4	1.23
	1.6	13.1	7.17	1.24
CuSe NCs- B	1.2	7.81	50.04	1.42
	1.4	8.26	14.7	1.35
	1.6	8.24	4.62	1.37
CuSe NCs- C	1.2	8.20	187.2	0.33
	1.4	43.2	10.9	0.26
	1.6	8.37	7.97	0.35

Table S1. EIS elemental values of the developed CuSe NCs-A|CuMEs, CuSe NCs-B|CuMEs,

and CuSe NCs-C|CuMEs electrodes recorded in 1.0 M aqueous KHCO₃.

Catalyst	Potential (V)	R1 (ohm)	R2 (ohm)	C (mF)
CuSe NCs-A	1.2	3022	56.3	0.36
	1.4	3726	56.9	0.13
	1.6	1909	56.6	0.14
CuSe NCs- B	1.2	294.1	19.4	2.02
	1.4	119.0	19.15	2.2
	1.6	90.7	19.25	4.1
CuSe NCs- C	1.2	3367	38.2	0.2
	1.4	1981	36.8	0.4
	1.6	516.0	40.4	0.5

Table S2. EIS elemental values of the developed CuSe NCs-**A**|CuMEs, CuSe NCs-**B**|CuMEs, and CuSe NCs-**C**|CuMEs electrodes recorded in 0.1 M [Bmim]PF₆/CH₃CN.

Table S3. List of the recently developed electrocatalysts and their CO₂RR activity.

Catalyst	Electrolyte	Onset	Catalytic	FE	References
			current	(%)	
			$(mA cm^{-2})$		
$Cu_{1.63}Se(1/3)$	[Bmim]PF ₆ /CH ₃ CN/H ₂ O	~-1.81 vs	~41.5 @ -2.1	77.6	1
		Ag/AgCl	V vs.		
			Ag/AgCl		
Pd ₈₃ Cu ₁₇	[Bmim]BF4	~-1.4 vs	-	80.0	2
		Ag/AgCl			
Mo-Bi	0.5 M [Bmim]BF4	-	~12.1 @ -0.7	71.2	3
BMC/CP	MeCN		V vs. RHE		
Cu@Cu2O	0.1M KHCO ₃	-	-	53.6	4
Pd-SnO ₂	0.1M NaHCO ₃	~-0.5 vs	~1.3 @ -0.7	54.8	5
		RHE	V vs. RHE		
CuSe NCs-B	0.1 M	~-1.1 vs	~120.3 @ -	62.7	This Work
	[Bmim]PF ₆ /CH ₃ CN	Ag/AgCl	2.0 V vs.		
			Ag/AgCl		

BMC- bimetallic chalcogenide; CP- carbon paper.

Fig. S1. XRD patterns of the Cu|CuMEs (a), Se|CuMEs (b) electrodes.

Fig. S2. HRSEM-EDX images of CuSe NCs-A|CuMEs (a), CuSe NCs-B|CuMEs (b), and CuSe NCs-C|CuMEs (c).

Fig. S3. HRTEM-EDX images of CuSe NCs-A|CuMEs (a), CuSe NCs-B|CuMEs (b), and CuSe NCs-C|CuMEs (c).

Fig. S4. CV curves of the CuSe NCs-A|CuMEs (**a**), CuSe NCs-B|CuMEs (**b**), and CuSe NCs-C|CuMEs (**c**) under CO₂ saturated 1.0 M aqueous KHCO₃ solution at a scan rate of 20 mV s⁻¹.

Fig. S5. The CV curves of Cu|CuMEs (**a**), Se|CuMEs (**b**) electrodes recorded in 1.0 M KHCO₃ at a scan rate of 20 mVs⁻¹. The LSV curves of the Cu|CuMEs (**c**), Se|CuMEs (**d**) electrodes at a scan rate of 20 mV s⁻¹ in a 1.0 M KHCO₃ solution under Ar (dotted line) and CO₂ (solid line).

Fig. S6. EIS measurements of the CuSe NCs-A|CuMEs (a), CuSe NCs-B|CuMEs (b), and CuSe NCs-C|CuMEs (c) at the different applied potential under CO₂ saturated 1.0 M aqueous KHCO₃ solution.

Fig. S7. Long term durability test for the CuSe NCs-A|CuMEs (a), CuSe NCs-B|CuMEs (b), and CuSe NCs-C|CuMEs (c) electrodes in 1.0 M aqueous KHCO₃ under CO₂ saturated at the constant potential of -0.93 V vs. RHE for 12 hours.

Fig. S8 Faradaic efficiency at -1.6 V (versus Ag/AgCl) under 0.1 M [Bmim]PF₆/MeCN at the CuSe NCs-A|CuMEs (red), CuSe NCs-B|CuMEs (green) and CuSe NCs-C|CuMEs (violet) microelectrodes.

Fig. S9. EIS results of the CuSe NCs-A|CuMEs (**a**), CuSe NCs-B|CuMEs (**b**), and CuSe NCs-C|CuMEs (**c**) under CO₂ saturated [Bmim]PF₆/MeCN at different potentials of 1.2 V(green), 1.4 V(red) and 1.6 V (blue).

Fig. S10. Durability test for the CuSe NCs-A|CuMEs (a), CuSe NCs-B|CuMEs (b), and CuSe NCs-C|CuMEs (c) under CO₂ saturated [Bmim]PF₆/MeCN at the constant potential of -1.6 V (vs. Ag/AgCl) for 24 hours.

References

- D. Yang, Q. Zhu, C. Chen, H. Liu, Z. Liu, Z. Zhao, X. Zhang, S. Liu and B. Han, *Nat. Commun.*, 2019, **10**, 677.
- L. Lu, X. Sun, J. Ma, D. Yang, H. Wu, B. Zhang, J. Zhang and B. Han, *Angew. Chemie*, 2018, 130, 14345–14349.
- X. Sun, Q. Zhu, X. Kang, H. Liu, Q. Qian, Z. Zhang and B. Han, *Angew. Chemie*, 2016, **128**, 6883–6887.
- X. Chang, T. Wang, Z. J. Zhao, P. Yang, J. Greeley, R. Mu, G. Zhang, Z. Gong, Z. Luo, J. Chen, Y. Cui, G. A. Ozin and J. Gong, *Angew. Chemie Int. Ed.*, 2018, 57, 15415–15419.
- W. Zhang, Q. Qin, L. Dai, R. Qin, X. Zhao, X. Chen, D. Ou, J. Chen, T. T. Chuong, B.
 Wu and N. Zheng, *Angew. Chemie Int. Ed.*, 2018, 57, 9475–9479.