## **Supplementary Material**

## Self-supporting 3D hierarchically porous CuNi-S cathodes with dual-phase structure for rechargeable Al battery

Aijing Lv<sup>a</sup>, Songle Lu<sup>a</sup>, Wenjing Yan<sup>a</sup>, Wentao Hu<sup>c,\*</sup>, Mingyong Wang<sup>a,b,\*</sup>

<sup>a</sup>State Key Laboratory of Advanced Metallurgy, University of Science and

Technology Beijing, Beijing 100083, P R China

<sup>b</sup>Beijing Key Laboratory of Green Recovery and Extraction of Rare and Precious

Metals, University of Science and Technology Beijing, Beijing 100083, China

<sup>c</sup>School of Civil and Resource Engineering, University of Science and Technology

Beijing, 100083 Beijing, P. R. China.

Corresponding author. Tel & Fax: 86-010-82376882, E-mail: <u>wthu010@ustb.edu.cn</u> (W T Hu), <u>mywang@ustb.edu.cn</u> (M Y Wang)

| Table | of | Contents |
|-------|----|----------|
|       |    |          |

| Table S1   |
|------------|
| Table S24  |
| Fig. S15   |
| Fig. S26   |
| Fig. S37   |
| Fig. S48   |
| Fig. S59   |
| Fig. S610  |
| Table S311 |
| Fig. S712  |
| Fig. S813  |
| Tabel S414 |
| Fig. S915  |
| Fig. S1016 |
| Table S517 |

| Cu/Ni | Electrolyte compositions |                       |                   |              |          |  |  |  |
|-------|--------------------------|-----------------------|-------------------|--------------|----------|--|--|--|
| ratio | CuSO <sub>4</sub> (M)    | NiSO <sub>4</sub> (M) | $(NH_4)_2SO_4(M)$ | $H_2SO_4(M)$ | SDS (mM) |  |  |  |
| 1:0   | 0.1                      |                       | 1.0               | 0.7          | 1.0      |  |  |  |
| 1:1   | 0.1                      | 0.1                   | 1.0               | 0.7          | 1.0      |  |  |  |
| 1:2   | 0.1                      | 0.2                   | 1.0               | 0.7          | 1.0      |  |  |  |
| 0:1   |                          | 0.1                   | 1.0               | 0.7          | 1.0      |  |  |  |

Table S1. Electrolyte compositions for metal electrodeposition based on different

Cu/Ni ratio.

| ratio.        |                             |                          |                               |  |  |
|---------------|-----------------------------|--------------------------|-------------------------------|--|--|
|               | Cathodes name               |                          |                               |  |  |
| Cu/Ni ratio — | Electrodeposited<br>Samples | Oxidation Samples        | Sulfur Replacement<br>Samples |  |  |
| 1:0           | Cu/CC                       | Cu-O/CC                  | Cu-S/CC                       |  |  |
| 1:1           | CuNi/CC <sub>1.0</sub>      | CuNi-O/CC <sub>1.0</sub> | CuNi-S/CC <sub>1.0</sub>      |  |  |
| 1:2           | CuNi/CC <sub>2.0</sub>      | CuNi-O/CC <sub>2.0</sub> | CuNi-S/CC <sub>2.0</sub>      |  |  |
| 0:1           | Ni/CC                       | Ni-O/CC                  | Ni-S/CC                       |  |  |

Table S2. Cathodes names for the self-supporting cathodes based on different Cu/Ni



Fig. S1 SEM images of (a-c) Cu-S/CC, (d-f) Ni-S/CC and (g-i) CuNi-S/CC<sub>2.0</sub>.



**Fig. S2** SEM images of (a) carbon cloth (CC) fibers and (b) carbon fibers covered by CuNi-S<sub>1.0</sub>. (c) Top-view SEM image of CuNi-S/CC<sub>1.0</sub>.



Fig. S3 XRD pattern of carbon cloth (CC) fibers.



Fig. S4 (a) XRD patterns of Ni-S/CC, Cu-S/CC and CuNi-S/CC<sub>2.0</sub>. (b) XRD patterns of CuNi/CC<sub>1.0</sub> and CuNi-O/CC<sub>1.0</sub>.



**Fig. S5** Corrosion resistance and electrical conductivity of self-supporting Ni-S/CC cathode based on AlCl<sub>3</sub>/[EMIm]Cl ionic liquids. (a) Tafel curves and electrochemical corrosion parameters of Ni-S/CC. (b) Nyquist plots of Ni-S/CC cathode before cycling.



**Fig. S6** Equivalent circuit for EIS of Cu-S/CC, Ni-S/CC, CuNi-S/CC<sub>1.0</sub>, CuNi-S/CC<sub>2.0</sub>, CuNi-O/CC<sub>1.0</sub> and CuNi/CC<sub>1.0</sub> cathodes.

Where *Rs* is the solution resistance;  $R_{ct1}$  and  $CPE_1$  are the micro-pore resistance and constant phase element of various self-supporting cathodes;  $R_{ct2}$  and  $CPE_2$  are the charge-transfer resistance and constant phase element of various self-supporting cathodes;  $Z_w$  is associated with the Warburg impedance.

| Parameter                                                          | CuNi/CC <sub>1.0</sub> | CuNi-O/CC <sub>1.0</sub> | CuNi-S/CC <sub>1.0</sub> | CuNi-S/CC <sub>2.0</sub> | Cu-S/CC                | Ni-S/CC                |
|--------------------------------------------------------------------|------------------------|--------------------------|--------------------------|--------------------------|------------------------|------------------------|
| $R_s$ / $\Omega$ cm <sup>2</sup>                                   | 4.33                   | 5.50                     | 4.25                     | 5.09                     | 5.05                   | 4.96                   |
| $R_{ct1}$ / $\Omega$ cm <sup>2</sup>                               | 6.84                   | 6.52                     | 4.24                     | 2.64                     | 5.90                   | 11.30                  |
| $CPE_{1\text{-}T} \ / \ \Omega^{\text{-}1} \ s^n \ cm^{\text{-}2}$ | 9.95×10 <sup>-5</sup>  | 2.80×10 <sup>-5</sup>    | 1.96×10 <sup>-5</sup>    | 7.96×10 <sup>-5</sup>    | 3.79×10 <sup>-4</sup>  | 1.90×10-5              |
| CPE <sub>I-P</sub>                                                 | 0.66                   | 0.77                     | 0.77                     | 0.73                     | 0.59                   | 0.92                   |
| $R_{ct2}$ / $\Omega$ cm <sup>2</sup>                               | 73.98                  | 409.90                   | 126.50                   | 108.90                   | 225.50                 | 88.06                  |
| $CPE_{2\text{-}T} \ / \ \Omega^{\text{-}1} \ s^n \ cm^{\text{-}2}$ | 2.89×10 <sup>-4</sup>  | 1.16×10 <sup>-3</sup>    | 1.35×10 <sup>-3</sup>    | 1.21×10 <sup>-3</sup>    | 4.89×10 <sup>-4</sup>  | 2.18×10 <sup>-4</sup>  |
| CPE <sub>2-P</sub>                                                 | 0.79                   | 0.64                     | 0.69                     | 0.74                     | 0.71                   | 0.86                   |
| $Z_{w-R}$ / $\Omega$ cm <sup>2</sup>                               | 919.80                 | 60.97                    | 36.46                    | 29.97                    | 39.64                  | 411.40                 |
| $Z_{w-T}$                                                          | 7.86                   | 0.37                     | 0.43                     | 0.47                     | 0.15                   | 1.09                   |
| $Z_{w-P}$                                                          | 0.56                   | 0.39                     | 0.43                     | 0.37                     | 0.34                   | 0.47                   |
| σ                                                                  | 92.57                  | 61.67                    | 20.86                    | 16.90                    | 46.51                  | 118.00                 |
| $DC^{a)} / cm^2 s^{-1}$                                            | 9.49×10 <sup>-16</sup> | 2.14×10 <sup>-15</sup>   | $1.87 \times 10^{-14}$   | $2.85 \times 10^{-14}$   | 3.76×10 <sup>-15</sup> | 5.84×10 <sup>-16</sup> |

Table S3. EIS parameters and diffusion coefficients obtained by fitting the impedance spectra of CuNi/CC<sub>1.0</sub>, CuNi-O/CC<sub>1.0</sub>, CuNi-S/CC<sub>1.0</sub>,

CuNi-S/CC<sub>2.0</sub>, Cu-S/CC and Ni-S/CC cathodes

<sup>a)</sup> The diffusion coefficient (DC) is calculated as follow:

$$DC = \frac{1}{2} \left[ \frac{RT}{F^2 n^2 A C \sigma} \right]^2$$
(S1)

$$Z_{\rm re} = K + \sigma \omega^{-1/2} \tag{S2}$$

Where R is the gas constant (8.314 J K<sup>-1</sup> mol<sup>-1</sup>); T is the absolute temperature (298 K); F is the Faraday constant (96485 C mol<sup>-1</sup>); n is the electron transfer number; A is the active surface area of the cathode (1 cm<sup>2</sup>); C is the concentration of Al ions in the cathode electrode ( $\sim 1.65 \times 10^{-2}$  mol cm<sup>-3</sup>);  $\sigma$  is the Warburg coefficient, determined by the slope of the resistance Z<sub>re</sub>  $\omega^{-1/2}$ in low frequency region  $(\omega = 2\pi f).$ real vs.



**Fig. S7** (a) Charge/discharge curves of Cu-S/CC and powdery Cu-S/Ta cathode of 2nd cycle at the current densities of 200 mA  $g^{-1}$ . (b) Charge/discharge curves of 2nd, 5th, 100th, 200th cycles of CC cathode at a current density of 200 mA  $g^{-1}$ . Charge/discharge curves of 5th, 10th, 20th cycles of (c) Cu-S/CC, (e) powdery Cu-S/Ta cathode at a current density of 200 mA  $g^{-1}$ . Cycling performance and coulombic efficiency of (d) Cu-S/CC and (f) powdery Cu-S/Ta at a current density of 200 mA  $g^{-1}$ .



**Fig. S8** (a) Charge/discharge curves of Ni-S/CC cathode for 2nd, 5th, 100th, 200th cycles at a current density of 200 mA g<sup>-1</sup>. (b) Cycling performance and coulombic efficiency of Ni-S/CC at a current density of 200 mA g<sup>-1</sup>.

| Material                 | Loading<br>mass /<br>mg cm <sup>-2</sup> | Cycle<br>number | Initial<br>capacity /<br>mA h g <sup>-1</sup> | Last<br>capacity /<br>mA h g <sup>-1</sup> | Current<br>Density /<br>mA g <sup>-1</sup> | Coulombic<br>Efficiency /<br>% |
|--------------------------|------------------------------------------|-----------------|-----------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------|
| CuNi/CC <sub>1.0</sub>   | 5.3                                      |                 |                                               |                                            |                                            |                                |
| CuNi-O/CC <sub>1.0</sub> | 5.2                                      | 200             | 26.00                                         | 8.2                                        | 200                                        | 98.4                           |
| CuNi-S/CC <sub>1.0</sub> | 4.2                                      | 200             | 333.5                                         | 70.5                                       | 200                                        | 99.4                           |
| CuNi-S/CC <sub>2.0</sub> | 4.8                                      | 200             | 398.1                                         | 54.3                                       | 200                                        | 100.9                          |
| Cu-S/CC                  | 2.2                                      | 200             | 294.8                                         | 30.0                                       | 200                                        | 91.3                           |
| Ni-S/CC                  | 5.3                                      | 200             | 81.88                                         | 0.32                                       | 200                                        | 95.0                           |
| Cu-S/Ta                  | 0.6                                      | 200             | 124.2                                         | 23.0                                       | 200                                        | 94.3                           |

**Table S4.** Comparison of loading mass and electrochemical performance of various self-supporting cathodes prepared in this paper for Al battery cathodes



Fig. S9 Charge/discharge curves of CuNi-S/CC<sub>2.0</sub> cathode for 5th, 10th, 20th cycles at a current density of 200 mA  $g^{-1}$ .



**Fig. S10** (a) Charge/discharge curves of CuNi-O/CC<sub>1.0</sub> cathode for 2nd, 5th, 100th, 200th cycles at a current density of 200 mA  $g^{-1}$ . (b) Cycling performance and coulombic efficiency of CuNi-O/CC<sub>1.0</sub> at a current density of 200 mA  $g^{-1}$ .

|                                              | Cathode           | Current                      | Cycle  | Initial Capacity       | Last Capacity          | Discharge        | Loading Mass          |
|----------------------------------------------|-------------------|------------------------------|--------|------------------------|------------------------|------------------|-----------------------|
| Active Material                              | Preparation       | Density / mA g <sup>-1</sup> | Number | / mA h g <sup>-1</sup> | / mA h g <sup>-1</sup> | Voltage / V      | / mg cm <sup>-2</sup> |
| Ni <sub>3</sub> S <sub>2</sub> /graphene [9] | AM:PTFE=9:1       | 200                          | 300    | 235                    | 50                     | 1.0              | 0.9-1.35              |
| FeS <sub>2</sub> [10]                        | AM:CF:PTFE=14:5:1 | 8.94                         | 1      | ~600                   |                        | 0.65             |                       |
| SnS <sub>2</sub> /graphene [14]              | AM:KB:CMC=8:1:1   | 200                          | 100    | 392                    | 70                     | 0.68             | 1.6                   |
| NiS [17]                                     | not mentioned     | 200                          | 100    | 104.7                  | 104.4                  | 0.9              |                       |
| CuS/C [19]                                   | AM:AB:PVDF=6:3:1  | 20                           | 100    | 240                    | 90                     | ~1.0             |                       |
| VS <sub>2</sub> /graphene [20]               | AM:AB:PTFE=6:3:1  | 200                          | 50     | 165                    | 116                    | 0.7              |                       |
| CoS <sub>2</sub> [21]                        | AM+PVDF           | 100                          | 100    | ~130                   | 60                     |                  |                       |
| CoS2@CNFs [22]                               | AM:CB:PTFE=7:2:1  | 200                          | 500    |                        | ~80                    |                  |                       |
| $Co_3S_4[23]$                                | AM:KB:PTEE=8:1:1  | 50                           | 150    | 287.9                  | 90                     | ~0.68            | 1.5                   |
| Co <sub>9</sub> S <sub>8</sub> /CNT-CNF [24] | AM+PS             | 100                          | 200    | 315                    | 297                    | 0.95             | 1.5                   |
| WS2@NCNFs [25]                               | AM:CB:PVDF=7:2:1  | 100                          | 100    | 314.1                  | 195.8                  | 0.6              |                       |
| MoS <sub>2</sub> [26]                        | AM:AB:PVDF=6:3:1  | 50                           | 100    | 153.6                  | 112.2                  |                  |                       |
| MoS <sub>2</sub> /CNFs [27]                  | AM+PAN            | 100                          | 200    | 293.2                  | 126.6                  | 0.55             | ~2.2                  |
| S-NiCo@rGO [29]                              | AM:AB:PVDF=6:3:1  | 1000                         | 100    | 248.2                  | 83                     | 1.6, 0.9         |                       |
| This work-powdery Cu-S/Ta                    | AM:AB:PVDF=6:3:1  | 200                          | 200    | 124.2                  | 23.0                   | 1.60, 0.50       | 0.6                   |
| This work-Cu-S/CC                            | AM+CF             | 200                          | 200    | 294.8                  | 30.0                   | 1.75, 0.55       | 2.2                   |
| This work-CuNi-S/CC <sub>1.0</sub>           | AM+CF             | 200                          | 200    | 333.5                  | 70.5                   | 1.75, 0.85, 0.55 | 4.2                   |

 Table S5. Comparison of metal sulfides as cathode materials for Al batteries.

AM: active material; PVDF: polyvinylidene fluoride; PTFE: polytetrafluoroethylene; KB: ketjen black; CMC: carboxymethyl cellulose; CB: carbon black; PS: polystyrene;

AB: acetylene black; CF: carbon fiber