Supporting Information

Enhanced electrocatalytic activity of layered triple hydroxide (LTH) by modulating electronic structure and active sites for efficient and stable urea electrolysis

Komal Patil^a, Pravin Babar^b, Hyojung Bae^c, Eunae Jo^a, Jun Sung Jang^a, Pravin Bhoite^d, Sanjay Kolekar^e, and Jin Hyeok Kim^a*

^a Optoelectronic Convergence Research Center, Department of Materials Science and

Engineering, Chonnam National University, Gwangju 500-757, South Korea

^b KAUST Catalysis Center, Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia

^c Optoelectronic Convergence Research Center, Chonnam National University, Gwangju 61186, South Korea

^d Department of Chemistry, Kisan Veer Mahavidyalaya, Wai,412803, Maharashtra, India

^e Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India

* Corresponding author, email: <u>jinhyeok@chonnam.ac.kr (Jin Hyeok Kim)</u>

Figure S1. (a) XPS survey spectrum of NiCoFe-LTH/NF, (b) N_2 adsorption and desorption isotherms and pore size distribution of NiCo-LDH/NF.

Figure S2. (a-b) SEM images of Blank NF.

Figure S3. CV curves of (a) NiCoFe-LTH/NF and (b) NiCo-LDH/NF at different scan rates.

Figure S4. (a) Backward CV of NiCo-LDH/NF for charge integration and calculation of electrochemically accessible sites, (e) Plot of TOF against overpotential for UOR (0.33 M urea in 1 M KOH) for NiCo-LDH/NF.

Figure S5. FE-SEM images of NiCoFe-LTH/NF nanosheets after 30 h stability for (a) UOR and (b) HER.

Figure S6. XPS spectra of (a) Ni 2p, (b) Co 2p, (c) Fe 2p, and (d) O 1s of NiCoFe-LTH/NF after long term UOR stability.

Figure S7. XPS spectra of (a) Ni 2p, (b) Co 2p, (c) Fe 2p, and (d) O 1s of NiCoFe-LTH/NF after

long term HER stability.

Electrocatalyst	Concentration of urea (M)	Current Density (mA cm ⁻²)	Potential (V)	References
substrate		10	1.37 (VS RHF)	665
Ni ₃ N/Carbon cloth (array)	0.33	100	0.462 (vs SCE)	Inorg. Chem. Front., 2017, 4, 1120-1124
Ni foil	0.33	10	1.51 (vs RHE)	J. Power Sources 196 (2011) 9579- 9584
Ni ₂ P/Carbon cloth (array)	0.5	100	0.447 (vs SCE)	J. Mater. Chem. A, 2017, 5, 3208-3213
Ni(OH) ₂ - nanocup arrays	0.33	10	1.46 (vs RHE)	Electrochim. Acta 144 (2014) 194- 199
Ni(OH) ₂ nanosheets	0.33	10	0.452 (vs. SCE)	Angew. Chem. Int. Ed., 2016, 55, 12465-12469
Ni/Co	0.33	10	1.45 (vs RHE)	Sci Rep. 4 (2014) 5863
MnO ₂ nanosheets	0.5	100	0.445 (vs SCE)	Angew. Chem. Int. Ed., 2016, 55, 3804-3808
α -Ni(OH) ₂ nanotubes	0.33	10	1.60 (vs RHE)	Electrochem. Commun. 29 (2013) 21- 24
Ni(OH)2 (array)	0.33	10	0.312 (vs	Electrochim. Acta, 2014, 144, 194- 199

Table S1. Comparison with other electrocatalysts for UOR reported in literatures

			SCE)	
Metallic Ni(OH) ₂	0.33	10	1.40 (vs RHE)	Angew. Chem. Int. Ed. Engl. 55 (2016) 12465-12469
NiO/Ni foam (array)	0.33	10	0.312 (vs SCE)	J. Power Sources, 2014, 272, 711-718
NiMo/graphene	0.33	10	1.40 (vs RHE)	Electrochim. Acta 242 (2017) 247- 259
NiFe double hydroxide	0.33	10	1.48 (vs RHE)	New J. Chem. 41 (2017) 4190-4196
NiCo ₂ O ₄	0.33	10	1.36 (vs RHE)	Nanoscale 6 (2014) 1369-1376
CuO-Ni(OH) ₂ nanosheets	0.33	10	1.41 (vs RHE)	Applied Surface Science 560 (2021) 150009
NiCo-LDH/NF	0.33	25	1.482 (vs RHE)	This work
NiCoFe- LTH/NF	0.33	25	1.337 (vs RHE)	This work

 Table S2. Comparison with other electrocatalysts for HER reported in literatures

Electrocatalyst	Electrolyte	Overpotential $(mV) (10 \text{ mA cm}^{-2})$	References
NT' '		250	ACS Catalysis 2013, $3(2)$,
N1 nanowires	I M NaOH	350	166-
2.12			169
porous N_1Se_2	1 M KOH	184	Chem. Mater. 2015, 27 (16),
nanosheets			5702-5711
Ni ₅ P ₄ Films	1 М КОН	150	Angew. Chem,. Int.
5 т			Ed.2015,127(42), 12538-12542
Ni(OH) ₂ -Pt/C hybrid	1 М КОН	184	ACS Catalysis 2015, 5 (6),
catalysts		104	3801-3806
NET I DIL		210	Science 2014, 345 (6204),
NIFE LDHS	I M KOH	219	1593-1596
		• • • •	J. Am. Chem. Soc. 2014, 136
CoP/CC	I M KOH	209	(21), 7587-7590
			Energy Environ. Sci. 2015, 8
Co NPs@N-CNTs	1 M KOH	370	(8), 2347-2351
Ni ₂ P	1 M KOH	220	Angew. Chem. Int. Ed., 2016,
2			55, 3804-3808
EG/Co _{0.85} Se/NiFeLDH	1 M KOH	300	Energy Environ Sci, 2016, 9,
			478-483
			ACS Energy Lett 2016 1
NiCoFe LTHs/CFC	1 M KOH	200	ACS Ellergy Lett. 2010, 1,
			445-455
NiCoFe-LTH/NF	1 M KOH	180	This work

Table S3. Comparison with other electrocatalysts for urea electrolysis reported in literatures

Electrocatalyst	Concentration of Urea (M)	Potential (mV) (10 mA cm ⁻²)	References
HC-NiMoS/Ti	0.5	1.66	Nano Res., 11 (2017) 988-996
Ni(OH) ₂ NS@NW/Ni foam nanosheets	0.33	1.58	Electrochim. Acta, 268 (2018) 211-217
Ni ₂ P/CFC	0.33	1.44	Electrochim. Acta, 254 (2017) 44-49
NiCo ₂ S ₄ NS/CC	0.33	1.45	ACS Sustain. Chem. Eng., 6 (2018) 5011-5020
Fe11.1%–Ni ₃ S ₂ /Ni foam	0.33	1.46	J. Mater. Chem. A, 6 (2018) 4346-4353
MnO ₂ /MnCo ₂ O ₄	0.5	1.58	J. Mater. Chem. A, 5 (2017) 7825-7832
CoS ₂ NA/Ti	0.30	1.59	Electrochim. Acta, 246 (2017) 776-782
Ni ₃ N NA/CC	0.33	1.44	Inorg. Chem. Front., 4 (2017) 1120-1124
NiFeCo LDH/NF	0.33	1.49	ACS Sustain. Chem. Eng., 7 (2019) 10035-10043
1% Cu:a-Ni(OH) ₂ /NF	0.33	1.49	J. Mater. Chem. A, 7 (2019) 13577-13584
NiCoFe-LTH/NF	0.33	1.49	This work