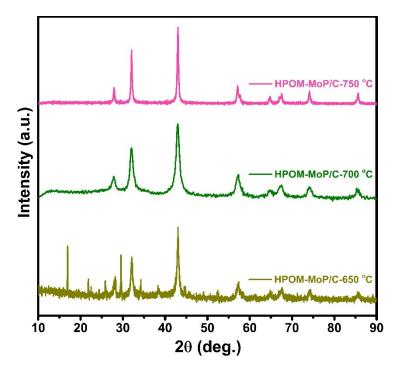
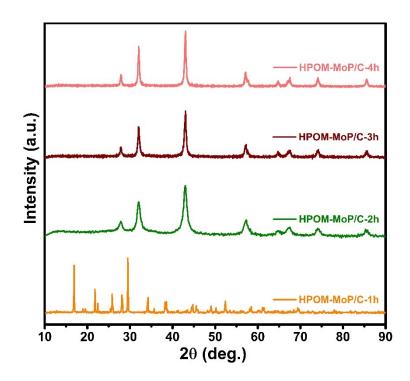
Enhanced electrocatalytic activity of *in-situ* carbon encapsulated Molybdenum Phosphide derived from hybrid POM for HER over a wide pH range

Balasingh Thangadurai Jebaslinhepzybai,^a Elavarasan Samaraj,^a Thangaian Kesavan,^a Manickam Sasidharan,^a J. Arockia Selvi^b* ^aEnergy Storage, Conversion and Catalysis Laboratory, SRM Research Institute and Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603203, Tamilnadu, India. ^bDepartment of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603203, Tamilnadu, India.


Corresponding author: arockiaj@srmist.edu.in

Synthesis of POM-MoP


100 mg of commercial phosphomolybdic acid and 500 mg of sodium hypophosphite were mixed together and followed by calcined at 700 °C for 2h with a heating rate of 5 °C min⁻¹ under N₂ atmosphere. The black solid was washed with DI water and ethanol then vacuum dried at 60 °C for overnight

Synthesis of MoP

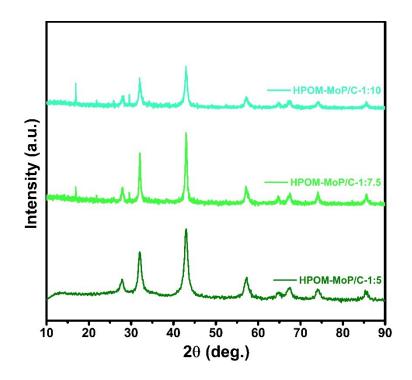

100 mg of sodium molybdate dihydrate and 500 mg of sodium hypophosphite were mixed together to form a homogeneous mixture. The obtained mixture was calcined at 700 °C for 2h with ramping range of 5 °C min⁻¹ under N₂ atmosphere. The final product was washed with DI water and ethanol then vacuum dried at 60 °C for overnight.

Fig. S1 Powder XRD profiles of HPOM-MOP/C-650 °C, HPOM-MOP/C-700 °C, and HPOM-MOP/C-750 °C.

Fig. S2 Powder XRD profiles of HPOM-MOP/C-1 h, HPOM-MOP/C-2 h, HPOM-MOP/C-3 h and HPOM-MOP/C-4 h.

Fig. S3 Powder XRD profiles of HPOM-MOP/C-1:5, HPOM-MOP/C-1:7.5, and HPOM-MOP/C-1:10.

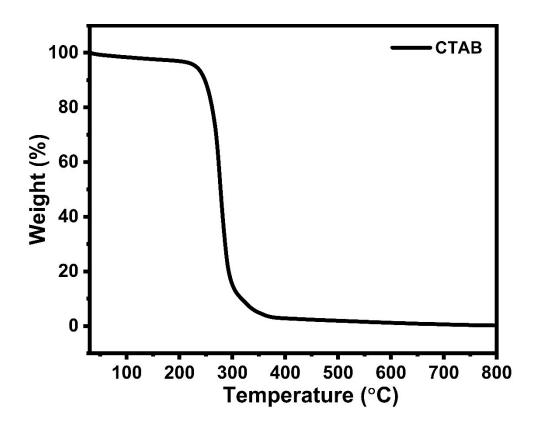
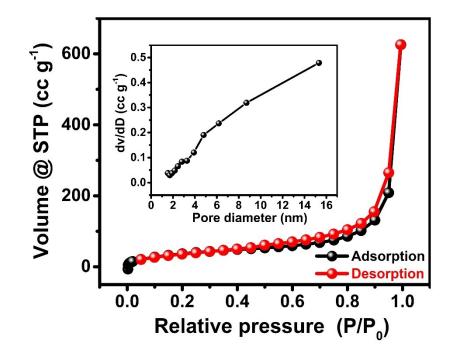
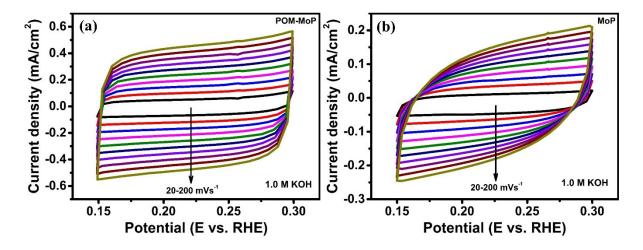
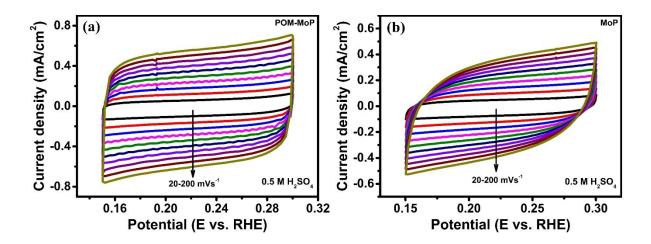


Fig. S4 TGA curve of cetyltrimethylammonium bromide (CTAB).

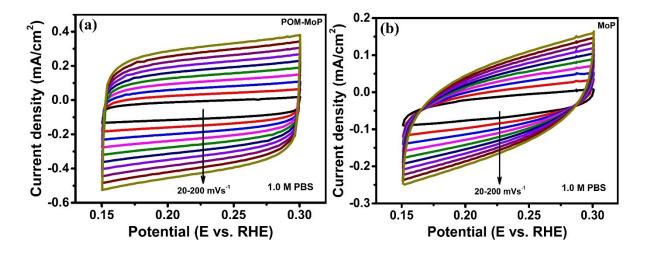

Fig. S5 BET N_2 adsorption and desorption isotherm curves of HPOM-MoP/C with inset image showing the pore size distribution curves.

Fig. S6 Cyclic voltammetry graphs for **(a)** POM-MoP and **(b)** MoP in the HER region of 0.15 to 0.30 V vs. RHE in 1.0 M KOH.

Fig. S7 Cyclic voltammetry graphs for **(a)** POM-MoP and **(b)** MoP in the HER region of 0.15 to 0.30 V vs. RHE in 0.5 M H₂SO₄.

Fig. S8 Cyclic voltammetry graphs for **(a)** POM-MoP and **(b)** MoP in the HER region of 0.15 to 0.30 V vs. RHE in 1.0 M PBS.

Calculation of TOF

The HER Turn over frequency (TOF) of the HPOM-MoP/C electrocatalyst were determined by the following equations.

$$n = \frac{m_{mass}}{M}$$

Where, n is the number of moles of active sites on the working electrode, m_{mass} is the mass loading of the active materials and M is the molar mass of the active materials.

Then we can calculate the TOF using the following equation,

$$TOF = \frac{JA}{2Fn}$$

Where, J is the current density at the overpotential of 200 mV in A/cm², A is the area of the working electrode (0.196 cm²), 2 represents the stoichiometric number of electrons consumed in the electrode HER reaction and F is the Faraday constant (96485 C mol⁻¹).

Catalyst	Particle diameters	Morphology	Over potential (mV) @ 10 mA cm ⁻²			
			Acid (0.5 M H ₂ SO ₄)	Alkaline (1.0 M KOH)	Neutral (1.0 M PBS)	Reference
MoP@NPC/rGO	~ 500 nm	Rod-like	218	NA	NA	1
MoP@PC-CNTs	~ 200 nm	Nano spherical	220	NA	NA	2
CQDs/MoP	20 nm	Irregular Particles	NA	210 @ η ₂₀	NA	3
MoP - 700	8-30 nm	Nanoparticles	NA	NA	196	4
MoP@PC	~ 200 nm	Polyhedral	258	NA	NA	5
MoP/rGO	3 nm	Cluster-like	119	140	NA	6
MoP/NC	1.5–3 μm	Microflower	120	170	NA	7
MoP@NC	50 to 65 nm	Hollow Quasi- Spherical	52	106	171	8
α-MoC _{1-x} - MoP/C	2 nm to 5 nm	Ultrafine Nanoparticles	173	NA	NA	9
HPOM-MoP/C	15-20 nm	Spherical	163	135	166	This work

Table S1. Comparison of HER performance with existing POM based MoP catalysts in acidic,

alkaline and neutral medium

References

- 1 J.-S. Li, J.-Q. Sha, B. Du and B. Tang, *Chem. Commun.*, 2017, **53**, 12576–12579.
- 2 J.-S. Li, X.-R. Wang, J.-Y. Li, S. Zhang, J.-Q. Sha, G.-D. Liu and B. Tang, *Carbon N. Y.*, 2018, **139**, 234–240.
- L. Zhang, Y. Yang, M. A. Ziaee, K. Lu and R. Wang, ACS Appl. Mater. Interfaces, 2018, 10, 9460–9467.
- X. Xie, M. Song, L. Wang, M. H. Engelhard, L. Luo, A. Miller, Y. Zhang, L. Du, H. Pan,
 Z. Nie, Y. Chu, L. Estevez, Z. Wei, H. Liu, C. Wang, D. Li and Y. Shao, ACS Catal.,
 2019, 9, 8712–8718.
- 5 J.-S. Li, S. Zhang, J.-Q. Sha, H. Wang, M.-Z. Liu, L.-X. Kong and G.-D. Liu, ACS Appl.

Mater. Interfaces, 2018, 10, 17140–17146.

- 6 H. Yan, Y. Jiao, A. Wu, C. Tian, X. Zhang, L. Wang, Z. Ren and H. Fu, *Chem. Commun.*, 2016, **52**, 9530–9533.
- 7 Y. Huang, X. Song, J. Deng, C. Zha, W. Huang, Y. Wu and Y. Li, *Appl. Catal. B Environ.*, 2019, **245**, 656–661.
- 8 S. Chakrabartty, D. Sahu and C. R. Raj, *ACS Appl. Energy Mater.*, 2020, **3**, 2811–2820.
- 9 T. Liu, X. Zhang, T. Guo, Z. Wu and D. Wang, Electrochim. Acta, 2020, **334**, 135624.