Supporting Information

Boundaries of charge-discharge curves of batteries

Amir Haghipour^a, Maryam Tahertalari^b, Mohammad Mahdi Kalantarian,*^b

^{a.} Materials Research Institute Aalen, Aalen University, Beethovenstr. 1, D-73430 Aalen, Germany. ^{b.} Ceramic Department, Materials and Energy Research Center, P.O. Box 31787-316, Tehran, Iran.

*Corresponding authors. E-mails: m.kalantarian@merc.ac.ir, kalantarian@gmail.com

Figure S1. Plotting inverse value of the square root of t_b , t_{b1} , and t_{b2} (see Figure 3) for discharge V-T diagrams $(\frac{1}{\sqrt{t_b}})$ versus rate for several data taken from literature.

The data are taken from discharge V-C diagrams of the following references: a and b) ultrafast charging and discharging LiFe_{0.9}P_{0.95}O_{4.6}⁻¹ (A1), semi-graphitic carboncoated LiFePO₄ (LFP/C composite sample)² (A2), LFP/carbon nanocomposite with a core-shell structure³ (A3), LFP/C nanocomposite using FePO4·2H2O nanoparticles (b-LFP sample)⁴ (A4), carbon-coated LFP without use of sucrose during the synthesis (4-LFP3 sample)⁵ (A5), c, d, and e) microspherical LFP-Carbon Composite⁶ (B1), mesoporous LFP/C nano-composite with superior performance⁷ (B2), LFP synthesized by a hydrothermal method with an average particle size of 200–300 nm and 3 wt% carbon coating on the particle surface (LFP sample)⁸ (B3), core–shell LFP/carbon nanocomposite⁹ (B4), porous nanostructured LFP powder synthesized without lauric acid¹⁰ (B5), f, g, and h) porous nanostructured LFP powder synthesized with lauric acid¹⁰ (C1), porous spherical LFP/C microscale composite¹¹ (C2), LFP/Graphene composite (LFP/G sample), LFP nanoparticles were synthesized using a hydrothermal method¹² (C3), micro dumbbell LFP¹³ (C4), fractal LFP/C composite¹⁴ (C5), i) nitrogen-doped carbon-wrapped Na₃V₂(PO₄)₃/C (NVP/C/NC sample)¹⁵ (D1), organic-electrolyte Na/NaFePO₄ cell¹⁶ (D2), high performance NaFePO₄/C microsphere hybrid composite¹⁷ (D3), hard carbon coated porous Na₃V₂(PO₄)₃@C composite (NVP@C@HC sample)¹⁸ (D4), NaFePO₄ formed by aqueous ion-exchange¹⁹ (D5), GO-wrapped LiFeSO₄F²⁰ (D6), j) monoclinic Fe₂(SO₄)²¹ (E1), recovered nano-LiMnPO₄/C powder²² (E2), Na/NaFePO₄ battery with reversible NaFePO₄ electrode²³ (E3), Na/carbon-coated Na₂FePO₄F synthesized by solid-state method²⁴ (E4), Carbon-coated LiFeBO₃ synthesized by sol-gel²⁵ (E5), k) PEDOT-LiFeSO₄F composite²⁶ (F1), porous Na₃V₂(PO₄)₃/C cathode²⁷ (F2), porous sponge-like Na₂FePO₄F/C ²⁸ (F3), Spoke-Like Nanorods of Na[Ni_{0.61}Co_{0.12}Mn_{0.27}]O₂ (SNA sample)²⁹ (F4), Na₃V₂O₂(PO₄

Figure S2. Plotting inverse value of the square root of t_{b1} (see Figure 3) for discharge V-T diagrams $(\frac{1}{\sqrt{t_b}})$ versus \sqrt{rate} for several data taken from literature. The data are taken from discharge V-C diagrams of the following references: a) ultrafast charging and discharging LiFe_{0.9}P_{0.95}O_{4.6}⁻¹ (A1), semi-graphitic carbon-coated LiFePO₄ (LFP/C composite sample)² (A2), LFP/carbon nanocomposite with a core-shell structure³ (A3), LFP/C nanocomposite using FePO4-2H2O nanoparticles (b-LFP sample)⁴ (A4), carbon-coated LFP without use of sucrose during the synthesis (4-LFP3 sample)⁵ (A5), b) microspherical LFP-Carbon Composite⁶ (B1), mesoporous LFP/C nano-composite with superior performance⁷ (B2), LFP synthesized by a hydrothermal method with an average particle size of 200–300 nm and 3 wt% carbon coating on the particle surface (LFP sample)⁸ (B3), core–shell LFP/carbon nanocomposite⁹ (B4), porous nanostructured LFP powder synthesized with lauric acid¹⁰ (C1), porous spherical LFP/C microscale composite¹¹ (C2), LFP/Graphene composite (LFP/G sample), LFP nanoparticles were synthesized using a hydrothermal method¹² (C3), micro dumbbell LFP¹³ (C4), fractal LFP/C composite¹⁴ (C5).

References:

- 1. B. Kang and G. Ceder, *Nature*, 2009, 458, 190-193.
- 2. Y. Wang, H. Li, P. He, E. Hosono and H. Zhou, *Nanoscale*, 2010, 2, 1294-1305.
- 3. Y. Wang, P. He and H. Zhou, *Energy & Environmental Science*, 2011, 4, 805-817.
- 4. C. Chen, G. Liu, Y. Wang, J. Li and H. Liu, *Electrochimica Acta*, 2013, 113, 464-469.
- 5. N. Kalaiselvi and A. Manthiram, J. Power Sources, 2010, 195, 2894-2899.
- 6. L. Yu, D. Cai, H. Wang and M.-M. Titirici, *Nanomaterials*, 2013, 3, 443-452.
- 7. G. Wang, H. Liu, J. Liu, S. Qiao, G. M. Lu, P. Munroe and H. Ahn, *Advanced Materials*, 2010, 22, 4944-4948.

- 8. H. Zheng, J. Li, X. Song, G. Liu and V. S. Battaglia, *Electrochimica Acta*, 2012, 71, 258-265.
- 9. H. Li and H. Zhou, *Chemical Communications*, 2012, 48, 1201-1217.
- 10. D. Choi and P. N. Kumta, Journal of Power Sources, 2007, 163, 1064-1069.
- 11. S. Ju, T. Liu, H. Peng, G. Li and K. Chen, *Materials Letters*, 2013, 93, 194-198.
- 12. X. Zhou, F. Wang, Y. Zhu and Z. Liu, *Journal of Materials Chemistry*, 2011, 21, 3353-3358.
- 13. L. Hu, T. Zhang, J. Liang, Y. Zhu, K. Zhang and Y. Qian, *RSC Advances*, 2016, 6, 456-463.
- 14. Z. Cabán-Huertas, O. Ayyad, D. Dubal and P. Gómez-Romero, 2016.
- 15. H.-b. Huang, S.-h. Luo, C.-l. Liu, Y. Yang, Y.-c. Zhai, L.-j. Chang and M.-q. Li, *Applied Surface Science*, 2019, 487, 1159-1166.
- 16. N. Wongittharom, T.-C. Lee, C.-H. Wang, Y.-C. Wang and J.-K. Chang, *Journal of Materials Chemistry A*, 2014, 2, 5655-5661.
- 17. S. Mukherjee, S. Bin Mujib, D. Soares and G. Singh, *Materials*, 2019, 12, 1952.
- 18. L. Chen, Y. Zhao, S. Liu and L. Zhao, ACS applied materials & interfaces, 2017, 9, 44485-44493.
- 19. W. Tang, X. Song, Y. Du, C. Peng, M. Lin, S. Xi, B. Tian, J. Zheng, Y. Wu and F. Pan, *Journal of Materials Chemistry A*, 2016, 4, 4882-4892.
- 20. Z. Guo, D. Zhang, H. Qiu, T. Zhang, Q. Fu, L. Zhang, X. Yan, X. Meng, G. Chen and Y. Wei, ACS applied materials & interfaces, 2015, 7, 13972-13979.
- 21. H. Park, J.-K. Yoo, W. Ko, Y. Lee, I. Park, S.-T. Myung and J. Kim, *Journal of Power Sources*, 2019, 434, 226750.
- 22. Q. Meng, J. Duan, Y. Zhang and P. Dong, Journal of Industrial and Engineering Chemistry, 2019, 80, 633-639.
- 23. S.-M. Oh, S.-T. Myung, J. Hassoun, B. Scrosati and Y.-K. Sun, *Electrochemistry communications*, 2012, 22, 149-152.
- 24. Y. Kawabe, N. Yabuuchi, M. Kajiyama, N. Fukuhara, T. Inamasu, R. Okuyama, I. Nakai and S. Komaba, *Electrochemistry Communications*, 2011, 13, 1225-1228.
- 25. W. Chen, L. Wu, X. Zhang, J. Liu, S. Liu and S. Zhong, Journal of Solid State Electrochemistry, 2018, 22, 1677-1687.
- 26. A. Sobkowiak, M. R. Roberts, R. Younesi, T. Ericsson, L. Häggström, C.-W. Tai, A. M. Andersson, K. Edström, T. r. Gustafsson and F. Björefors, *Chemistry of Materials*, 2013, 25, 3020-3029.
- 27. K. Saravanan, C. W. Mason, A. Rudola, K. H. Wong and P. Balaya, Advanced Energy Materials, 2013, 3, 444-450.
- 28. S. Hua, S. Cai, R. Ling, Y. Li, Y. Jiang, D. Xie, S. Jiang, Y. Lin and K. Shen, *Inorganic Chemistry Communications*, 2018, 95, 90-94.
- 29. J. Y. Hwang, S. T. Myung, C. S. Yoon, S. S. Kim, D. Aurbach and Y. K. Sun, *Advanced Functional Materials*, 2016, 26, 8083-8093.
- 30. M. Xu, L. Wang, X. Zhao, J. Song, H. Xie, Y. Lu and J. B. Goodenough, *Physical Chemistry Chemical Physics*, 2013, 15, 13032-13037.