Supporting Information

Facilitating the redox conversion of CoSe₂ nanorods by Ti₃C₂T_x to

improve the electrode durability as anodes for sodium-ion batteries

Mingshan Wang^{1,2*}, Anmin Peng¹, Min Zeng¹, Lin Chen¹, Xinpeng Li¹, Zhenliang Yang³, Junchen Chen¹, Bingshu Guo¹, Zhiyuan Ma¹, Xing Li^{1*}

1 School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China

2 Energy Storage Research Institute, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China

3 Institute of Materials, China Academy of Engineering Physics, Mianyang, Sichuan 621908, P.R. China

1. The calculation of $Ti_3C_2T_x$ in $CoSe_2/Ti_3C_2T_x$

According to the TG curves of all samples, assuming that the actual content of $Ti_3C_2T_x$ is X, then the actual content of TiO_2 and Co_3O_4 are 93%X and $(1-X)\times35\%$, respectively.

At this time, the content of $Ti_3C_2T_x$ in $CoSe_2/Ti_3C_2T_x$ -10 can be calculated by (1-X)×35%+93X=39% (S1)

The content of $Ti_3C_2T_x$ CoSe₂/Ti₃C₂T_x-25 can be calculated by

$$(1-X) \times 35\% + 93\% X = 48\%$$
 (S2)

2. The calculation of D_{Na^+} .

$$D_{Na^{+}} = \frac{R^2 T^2}{2A^2 n^4 F^4 C^2 \sigma^2}$$
(S3)

$$Z' = R_{\rm f} + R_{\rm ct} + \sigma \omega^{-1/2} \tag{S4}$$

R is gas constant, T is the absolute temperature, F is the Faraday constant, n is the number of electrons, A is the active surface area of the electrode and C is the

^{*} Corresponding author. E-mail: ustbwangmingshan@163.com (Mingshan Wang), E-mail: lixing198141@163.com (Xing Li).

concentration of sodium ions in the electrolyte. σ is the Warburg factor, ω is the angular frequency, which is related to Z' and can be attained from the slope of the fitting line of the EIS data.

Figure S2. The C 1s spectra of $CoSe_2/Ti_3C_2T_x$ -10

Figure S3. (a) The survey scan spectrum of $CoSe_2/Ti_3C_2T_x$ -10; (b) N₂ adsorption-

desorption isotherms and (c) pore size distributions of $CoSe_2/Ti_3C_2T_x$ -10.

Figure S4. (a) Cycling performance of $Ti_3C_2T_x$ at 1.0 A g⁻¹; (b) Rate performance of $Ti_3C_2T_x$; (c) Different cycles charge/discharge curves of $CoSe_2$ at 1.0 A g⁻¹.

Figure S5. EDS mapping of $CoSe_2/Ti_3C_2T_x$ -10 after 1000 cycles at 1 A g⁻¹.

Figure S6. SEM image of $CoSe_2/Ti_3C_2T_x$ -10 after 1000 cycles

Figure S7. Equivalent circuit of the all electrode.

$\operatorname{CoSe}_{2}/\operatorname{Ti}_{3}\operatorname{C}_{2}\operatorname{T}_{x}$ -10	Peak BE	Atomic %
Co2s	925.08	2.61
Co2p1	794.03	2.21
Co2p3	779.08	2.66
F1s	684.84	0.19
Ti2s	565.12	0.77
O1s	531.2	5.37
Ti2p1	465.01	0.17
C1s	284.33	14.96
Se3s	230.08	6.68
Cl2p1	201.85	0.56
Cl2p3	199.41	0.19
Se3p1	166.64	1.39
Se3p3	160.82	3.09
Co3s	101.38	2.06
Co3p1	55.31	7.69
Co3p3	55.31	3.99
Ti3s	55.16	36.81
Se3d	54.94	6.15
Ti3p	37.2	1.34
O2s	22.95	0.87
Cl3s	15.77	0.23
total		100%

Table S1. The atomic content in survey scan spectrum of $CoSe_2/Ti_3C_2T_x$ -10

electrode	Rate performance	Long cycles performance	Ref
	(current density,	(current density,	
	specific capacity)	specific capacity, cycles)	
	specific capacity)	specific cupacity, cycles)	
	$0.1 \Delta \sigma^{-1} 450 \text{ m}\Delta \text{h} \sigma^{-1}$	$0.3 \ \Delta \ \sigma^{-1} \ 350 \ m \Delta h \ \sigma^{-1}$	
TT1 1		0.5 A g ,550 mAn g ,	
I his work	1 A g ⁻¹ , 350 mAn g ⁻¹		
		10.0 A g ⁻¹ ,200 mAh g ⁻¹ ,	
		1400 cycles	
CoSe _x -rGO	0.2 A g ⁻¹ ,443 mAh g ⁻¹ ;	0.3 A g ⁻¹ , 420 mAh g ⁻¹ ,	1
	1 A g ⁻¹ ,357 mAh g ⁻¹	50 cycles	
CoSe ₂ -Gc	0.1 A g ⁻¹ ,526 mAh g ⁻¹ ;	0.2 A g ⁻¹ ,399 mAh g ⁻¹ ,	2
	1 A g ⁻¹ , 451 mAh g ⁻¹	100 cycles	
CoSe ₂ @N-PGC/CNTs	0.2 A g ⁻¹ , 482 mAh g ⁻¹ ;	1 A g ⁻¹ , 300 mAh g ⁻¹ ,	3
	5 A g ⁻¹ , 368 mAh g ⁻¹	400 cycles	
CoSe ₂ -(NiCo)Se ₂	0.2 A g ⁻¹ , 554 mAh g ⁻¹ ;	1 A g ⁻¹ ,410 mAh g ⁻¹ ,	4
	$5 \text{ A } \text{g}^{-1} \text{ 456 mAh } \text{g}^{-1}$	100 cycles	
	5 mg , 150 mm g	100 0 90105	
Co _{0.85} Se@rGO	0.5 A g ⁻¹ , 448 mAh g ⁻¹ ;	1 A g ⁻¹ ,382 mAh g ⁻¹ ,	5
	6 A g ⁻¹ , 280 mAh g ⁻¹	800 cycles	
CoSe ₂ /N-CNFs	0.2 A g ⁻¹ , 323 mAh g ⁻¹ ;	2 A g ⁻¹ ,308 mAh g ⁻¹ ,	6
	2 A g ⁻¹ , 299 mAh g ⁻¹	1000 cycles	
CoSe ₂ -MoSe ₂ /C	0.2 A g ⁻¹ , 483 mAh g ⁻¹ ;	0.2 A g ⁻¹ ,399 mAh g ⁻¹ ,	7
	5 A g ⁻¹ , 317 mAh g ⁻¹	100 cycles	
CoSe2	0.2 A g ⁻¹ , 483 mAh g ⁻¹ ;	1 A g ⁻¹ .220 mAh g ⁻¹ .	8
	$5 \text{ A } \text{ g}^{-1} 317 \text{ mAh } \text{g}^{-1}$	1690 cycles	
			0
$CoSe_2(a)MoSe_2/C$	0.1 A g^{-1} , 460 mAh g $^{-1}$;	$1 \text{ A g}^{-1},305 \text{ mAh g}^{-1},$	9
	3 A g ⁻¹ , 379 mAh g ⁻¹	200 cycles	
Ni _{1.8} Co _{1.2} Se ₄ @NDDC	0.1 A g ⁻¹ , 427 mAh g ⁻¹ ;	0.5 A g ⁻¹ ,379.3 mAh g ⁻¹ ,	10
	50 A g ⁻¹ , 153 mAh g ⁻¹	100 cycles	
$CoMSe_2@NC, M = Ni,$	0.1 A g ⁻¹ , 511 mAh g ⁻¹ ;	0.5 A g ⁻¹ ,474 mAh g ⁻¹ ,	11
Cu, Zn	2 A g ⁻¹ , 291 mAh g ⁻¹	80 cycles	
CoSe ₂ @C∩NC	0.1 A g ⁻¹ , 366 mAh g ⁻¹ ;	5 A g ⁻¹ ,234 mAh g ⁻¹ ,	12
	25 A g ⁻¹ , 291 mAh g ⁻¹	2000 cycles	
Ni _x Co _{1-x} Se ₂	0.1 A g ⁻¹ , 525 mAh g ⁻¹ ;	2 A g ⁻¹ ,321 mAh g ⁻¹ ,	13
	5 A g ⁻¹ , 346 mAh g ⁻¹	2000 cycles	
	$0.2 \text{ A } \sigma^{-1}$ 480 mAh σ^{-1}	0 2 A σ ⁻¹ 404 mAh σ ⁻¹	14
	$5 \text{ A } \sigma^{-1} 364 \text{ mAh } \sigma^{-1}$	120 cvcles	
	5115,501mm5	120 090105	

 Table S2. Comparison of CoSe2-based anode in sodium-ion storage

Co0 _{.85} Se/N- HMCNs/CNTs	0.1 A g ⁻¹ , 361 mAh g ⁻¹ ; 5 A g ⁻¹ , 132 mAh g ⁻¹	1 A g ⁻¹ ,102 mAh g ⁻¹ , 1000 cycles	15
CoSe ₂ @NC@TiO ₂	0.1 A g ⁻¹ , 500 mAh g ⁻¹ ; 6.4 A g ⁻¹ , 300 mAh g ⁻¹	0.1 A g ⁻¹ ,364 mAh g ⁻¹ , 200 cycles	16
NiCoSe ₄ @NC@rGO	0.1 A g ⁻¹ , 503 mAh g ⁻¹ ; 10 A g ⁻¹ , 439 mAh g ⁻¹	1 A g ⁻¹ ,293 mAh g ⁻¹ , 1500 cycles	17
CNT/CoSe ₂ /C	0.1 A g ⁻¹ , 609 mAh g ⁻¹ ; 2.4 A g ⁻¹ , 224 mAh g ⁻¹	0.5 A g ⁻¹ ,396 mAh g ⁻¹ , 300 cycles	18
CoSe ₂ @BCN	0.1 A g ⁻¹ , 632 mAh g ⁻¹ ; 2 A g ⁻¹ , 338 mAh g ⁻¹	8.0 A g ⁻¹ ,300 mAh g ⁻¹ , 4000 cycles	19
DCC-CoSe ₂	0.1 A g ⁻¹ , 609 mAh g ⁻¹ ; 2.4 A g ⁻¹ , 224 mAh g ⁻¹	5 A g ⁻¹ ,430 mAh g ⁻¹ , 2000 cycles	20
(Ni,Co)Se ₂ /CNT	0.5 A g ⁻¹ , 444 mAh g ⁻¹ ; 20 A g ⁻¹ , 163 mAh g ⁻¹	3 A g ⁻¹ ,336 mAh g ⁻¹ , 10000 cycles	21

Sample	Fresh R _s /(R _f +R _{ct})	After 200 cycles $R_{s}/(R_{f}+R_{ct})$	After 500 cycles $R_{s}/(R_{f}+R_{ct})$
CoSe ₂	2.4/739.6 Ω	11.3/36.5 Ω	8.9/5.9 Ω
$CoSe_2/Ti_3C_2T_x-10$	1.2/307.1 Ω	10.4/8.9 Ω	9.8/4.1 Ω
$CoSe_2/Ti_3C_2T_x-25$	1.4/472.5 Ω	9.9/12.3 Ω	9.8/5.7 Ω

Table S3. Electrochemical resistances of $CoSe_2$, $CoSe_2/Ti_3C_2T_x$ -10 an $CoSe_2/Ti_3C_2T_x$ -25 fresh state, after 200th and 500th cycles

- 1. G. D. Park, Y. C. Kang. Chem. Eur. J. 2016, 22, 4140-6.
- 2. J. S. Cho, J. M. Won, J.-K. Lee, Y. C. Kang. Nano Energy 2016, 26, 466-478.
- 3. S.-K. Park, J. K. Kim, Y. C. Kang. Chem. Eng. J. 2017, 328, 546-555.
- 4. S.-K. Park, J. K. Kim, Y. Chan Kang. J. Mater. Chem. A 2017, 5, 18823-18830.
- Y. Huang, Z. Wang, Y. Jiang, S. Li, Z. Li, H. Zhang, F. Wu, M. Xie, L. Li, R. Chen. *Nano Energy* 2018, **53**, 524-535.
- C. Cui, Z. Wei, G. Zhou, W. Wei, J. Ma, L. Chen, C. Li. J. Mater. Chem. A 2018, 6, 7088-7098.
- 7. J. K. Kim, J. H. Kim, Y. C. Kang. Chem. Eng. J. 2018, 333, 665-677.
- 8. X. Ma, L. Zou, W. Zhao. Chemi. Commun. 2018, 54, 10507-10510.
- J. Gao, Y. Li, L. Shi, J. Li, G. Zhang. ACS Appl. Mater. Interfaces 2018, 10, 20635-20642.
- B.-H. Hou, Y.-Y. Wang, D.-S. Liu, Z.-Y. Gu, X. Feng, H. Fan, T. Zhang, C. Lü,
 X.-L. Wu. Adv. Funct. Mater. 2018, 28.
- Y. Jiang, G. Zou, H. Hou, J. Li, C. Liu, X. Qiu, X. Ji. ACS Nano 2019, 13, 10787-10797.
- B. Li, Y. Liu, X. Jin, S. Jiao, G. Wang, B. Peng, S. Zeng, L. Shi, J. Li, G. Zhang. Small 2019, 15, e1902881.
- Y. He, M. Luo, C. Dong, X. Ding, C. Yin, A. Nie, Y. Chen, Y. Qian, L. Xu. J. Mater. Chem. A 2019, 7, 3933-3940.
- 14. S. H. Yang, S.-K. Park, Y. C. Kang. Chem. Eng. J. 2019, 370, 1008-1018.

- K. Zhou, Y. Han, D. Tang, H. Wu, X. Wu, G. Diao, H. Li, M. Chen. Adv. Mater. Interfaces 2019, 7.
- B. Zhao, Q. Liu, G. Wei, J. Wang, X.-Y. Yu, X. Li, H. B. Wu. Chem. Eng. J. 2019, 378.
- X. Huang, S. Men, H. Zheng, D. D. Qin, X. Kang. *Chem Asian J* 2020, **15**, 1456-1463.
- M. Yousaf, Y. Chen, H. Tabassum, Z. Wang, Y. Wang, A. Y. Abid, A.
 Mahmood, N. Mahmood, S. Guo, R. P. S. Han, P. Gao. *Adv Sci*, 2020, 7, 1902907.
- H. Tabassum, C. Zhi, T. Hussain, T. Qiu, W. Aftab, R. Zou. Adv. Energy Mater.
 2019, 9.
- J. Tian, J. Li, Y. Zhang, X.-Y. Yu, Z. Hong. J. Mater. Chem. A 2019, 7, 21404-21409.
- 21. S. H. Oh, J. S. Cho. J. Alloys Compd. 2019, 806, 1029-1038.