MXene/Hybrid	Initial	current	CE (%)	Last	Referenc
Composites	Charge/Disc	density		capacity	e
	harge			after	
	Capacity			cycling	
	(mAh/g)				
Layered Ti ₃ C ₂ T _x	335	0.1 A/g	~100%	260 (1A/g)	Song et
					al. ¹
Functionalized activate	1133	0.1C	98.78	692 (3C)	Nam et al.
titanium carbide					2
nanorod growth on the					
surface of $Ti_3C_2T_x$					
(FTCN-MXene)					
Ti ₃ C ₂ T _x /TiO ₂	272	0.5 C (50		140 (after	Liu et al.
		mA/g)		the 200	3
				mA/g)	
Si/Ti ₃ C ₂	879	0.2A/g	69% initial	242 (3	Kong et
			CE	A/g)	al. ⁴
Si@Ti ₃ C ₂	3502.3	0.1A/g	99.8%	1720.8	Yang et
				(1A/g)	al. ⁵
$Ti_3C_2T_x/Si$ scrolls	226	100	100%	89 (5000	Meng et
		mA/g		mAh/g)	al. ⁶
Si/d-Ti ₃ C ₂	1948	0.2A/g	98% (after	890 (2	Zhu et al.
			7 th cycles)	A/g)	7
SiO/Wrinkled MXene	1987	200		713 (2000	Wei et al.
		mA/g		mA/g)	8
Binder free Si/MXene	2118	200	71% (Ist	1672(1000	Tian et al.
composites		mA/g	cycle)	mA/g)	9
Si/Alg/MXene(80/16/4	3800	0.1C	Initial CE	1050 (1C)	Sarang et
)			80%		al. ¹⁰
Ti ₃ C ₂ T _x /Si	731	0.1 C	100 %	252 (after	Li et al. 11
				200	
				cycles)	
SiNP@MX1/MX2	2865	0.05 A/g	100%	574 (5	Li et al. ¹²

				A/g)	
Si/Ti ₃ C ₂ T _x	1067.6	300		648 (300	Zhang et
		mA/g		mA/g after	al. ¹³
				100 cycles	
Ti ₃ C ₂ @Si/SiO _x @TiO ₂	1536	100mA/g	>98%	355 (2000	Jiang et
				A/g)	al. ¹⁴
SiO ₂ /MXene	840	0.1 A/g	99.99%(after	517 (3A/g)	Mu et al.
			2 nd cycle)		15
Si p-NSs@TNs	1498	0.1 A/g	80.2 % (ICE)	899 (4	Xia et
				A/g)	al. ¹⁶
SiO ₂ /Ti ₃ C ₂	567	0.1 C	99.6	134.2 (5C)	Liu et
					al. ¹⁷
Si/d-Ti ₃ C ₂	1948	0.1 C	74% (ICE)	890 (2C)	Zhu et al.
					7
Si@MXene capsules	1797	0.2 A/g	99.6%	759 (2	Yan et al.
				A/g)	18
$Ti_3C_2T_x/SnO_2$	1021	1C (100	98.5	500 (after	Xiong et
		mA/g)		700	al. ¹⁹
				cycles)	
SnO ₂ /MXene@200	843	500		514 (50	Ahmed et
		mA/g		cycles)	al. ²⁰
10-	729.1	50 mA/g		581 (50	Chen et
SnO _x /Ti				cycles)	al. ²¹
$_{3}C_{2}T_{x}$					
SnO ₂ /Ti ₃ C ₂	1030.1	1C	98%	82 mAh/g	Wang et
	mAh/g			(5C)	al. ²²
$SnO_2 QDs@d-Ti_3C_2T_x$	1046	0.5C	98%	350 (10 C)	Wang et
					al. ²³
PVP-Sn(IV)@ Ti ₃ C ₂	1637 mA/cm ³	50 mA/g	99%	698	Luo et al.
				mA/cm^3 (24
				3000	
				mA/g)	

Snnanocomplexpillared	881.5 mAh/g	500	97.2%	662 (5000)	Zhang et
few layer $Ti_3C_2T_x$		mA/g		mA/g	al. ²⁵
MXene (STCT)					
$3D Sn@ Ti_3C_2$	803mAh/g	0.1 A/g	>99%	238 (3A/g)	Wang et
					al. ²⁶
0D–2D SnO2	887.5 mAh/g	50 mA/g	Close to	364 (3000	Liu et al.
QDs/MXene			100%	mA/g)	27
SnO _x @Ti ₃ C ₂	365	0.1 A/g	99.9%	190 (Sun et al.
				2A/g)	28
Sn/SnO _x @Ti ₃ C ₂	834.5	50 mA/g	90.3 % (ICE)	Discharge	Zuo et
				capacity	al. ²⁹
				194.5 (5	
				A/g)	
Porous-Ti ₃ C ₂ T _x CNT	1250	0.1 C	100	500 (after	Ren et al.
				100 cycles	30
Ti ₃ C ₂ /CNT/Fe/CF	430	1A/g	58.7	175 (10	Zheng et
				A/g)	al. ³¹
C-Fe ₃ O ₄ /Ti ₃ C ₂	1196.8	0.5 A/g	-	780 (2	Li et al. ³²
				A/g)	
Ti ₃ C ₂ T _x -CNTs/SiNPs	2583	100		750 (1000	Cao et al.
		mA/g		mA/g)	33
C@Si@CNTs-7.5	880	100	99%	653 (1000	Yang et
		mA/g		mA/g)	al. ³⁴
MXene/CNTs@P	2598	0.05	77%	454 (30 C)	Zhang et
					al. ³⁵
1:1 Ti ₃ C ₂ / rGO	473	0.05 A/g		16.7	Ma et al.
				(4A/g)	36
rGO/Ti ₂ CT _r	920	50 mA/g	>99%	300 (2000	Xu et al.
				mA/g)	37
Ti ₃ C ₂ /TiO ₂ /rGO	339	0.1 A/g	99%	173 (10	Li et al. ³⁸
				A/g)	
Ti3C2Tx-CNT/SiNPs	5.2 mAh/Cm ²	100	62.8 % (ICE)	5.3	Cao et
		mA/g		mAh/Cm ² (al. ³⁹
				2000	

				mA/g)	
T-MXene@C	499.4	0.2 C	56.9% (ICE)	101.5 (100	Zhang et
				C)	al. ⁴⁰
MXene/Si@SiOx@C-2	1674 mAh	0.2 C	81.3% (ICE)	510 (10 C)	Zhang et
	g-1		after that		al. ⁴¹
			100%		

- 1. X. Song, H. Wang, S. Jin, M. Lv, Y. Zhang, X. Kong, H. Xu, T. Ma, X. Luo and H. Tan, *Nano Research*, 2020, **13**, 1659-1667.
- 2. S. Nam, S. Umrao, S. Oh, K. H. Shin, H. S. Park and I.-K. Oh, *Composites Part B: Engineering*, 2020, **181**, 107583.
- 3. Y. T. Liu, P. Zhang, N. Sun, B. Anasori, Q. Z. Zhu, H. Liu, Y. Gogotsi and B. Xu, Advanced Materials, 2018, **30**, 1707334.
- 4. F. Kong, X. He, Q. Liu, X. Qi, D. Sun, Y. Zheng, R. Wang and Y. Bai, *Electrochemistry Communications*, 2018, **97**, 16-21.
- 5. Q. Yang, Z. Wang, Y. Xia, G. Wu, C. Chen, J. Wang, P. Rao and A. Dong, *Journal of Colloid and Interface Science*, 2020.
- 6. J. Meng, F. Zhang, L. Zhang, L. Liu, J. Chen, B. Yang and X. Yan, *Journal of energy chemistry*, 2020, **46**, 256-263.
- 7. X. Zhu, J. Shen, X. Chen, Y. Li, W. Peng, G. Zhang, F. Zhang and X. Fan, *Chemical Engineering Journal*, 2019, **378**, 122212.
- 8. C. Wei, H. Fei, Y. Tian, Y. An, Y. Tao, Y. Li and J. Feng, *Chinese Chemical Letters*, 2020, **31**, 980-983.
- 9. Y. Tian, Y. An and J. Feng, ACS applied materials & interfaces, 2019, **11**, 10004-10011.
- 10. K. T. Sarang, X. Zhao, D. Holta, M. Radovic, M. J. Green, E.-S. Oh and J. L. Lutkenhaus, *Nanoscale*, 2020, **12**, 20699-20709.
- 11. H. Li, M. Lu, W. Han, H. Li, Y. Wu, W. Zhang, J. Wang and B. Zhang, *Journal of energy chemistry*, 2019, **38**, 50-54.
- 12. X. Li, Z. Chen, A. Li, Y. Yu, X. Chen and H. Song, *ACS applied materials & interfaces*, 2020.
- 13. F. Zhang, Z. Jia, C. Wang, A. Feng, K. Wang, T. Hou, J. Liu, Y. Zhang and G. Wu, *Energy*, 2020, **195**, 117047.
- 14. M. Jiang, F. Zhang, G. Zhu, Y. Ma, W. Luo, T. Zhou and J. Yang, ACS applied materials & *interfaces*, 2020.
- 15. G. Mu, D. Mu, B. Wu, C. Ma, J. Bi, L. Zhang, H. Yang and F. Wu, *Small*, 2020, **16**, 1905430.
- 16. M. Xia, B. Chen, F. Gu, L. Zu, M. Xu, Y. Feng, Z. Wang, H. Zhang, C. Zhang and J. Yang, *ACS nano*, 2020, **14**, 5111-5120.
- 17. J.-q. Liu, S.-c. Song, D.-c. Zuo, C. Yan, Z.-j. He, Y.-j. Li and J.-c. Zheng, *Ionics*, 2020, 1-7.
- 18. Y. Yan, X. Zhao, H. Dou, J. Wei, Z. Sun, Y.-S. He, Q. Dong, H. Xu and X. Yang, ACS applied materials & interfaces, 2020, **12**, 18541-18550.
- 19. J. Xiong, L. Pan, H. Wang, F. Du, Y. Chen, J. Yang and C. J. Zhang, *Electrochimica Acta*, 2018, **268**, 503-511.
- 20. B. Ahmed, D. H. Anjum, Y. Gogotsi and H. N. Alshareef, *Nano Energy*, 2017, **34**, 249-256.
- 21. H. Chen, 2019.
- 22. F. Wang, Z. Wang, J. Zhu, H. Yang, X. Chen, L. Wang and C. Yang, *Journal of Materials Science*, 2017, **52**, 3556-3565.

- 23. L. Wang, Y. He, D. Liu, L. Liu, H. Chen, Q. Hu, X. Liu and A. Zhou, *Journal of The Electrochemical Society*, 2020, **167**, 116522.
- 24. J. Luo, X. Tao, J. Zhang, Y. Xia, H. Huang, L. Zhang, Y. Gan, C. Liang and W. Zhang, *ACS nano*, 2016, **10**, 2491-2499.
- 25. S. Zhang, H. Ying, B. Yuan, R. Hu and W.-Q. Han, *Nano-Micro Letters*, 2020, **12**, 1-14.
- 26. Z. Wang, J. Bai, H. Xu, G. Chen, S. Kang and X. Li, *Journal of Colloid and Interface Science*, 2020.
- 27. H. Liu, X. Zhang, Y. Zhu, B. Cao and Q. Zhu, Journal.
- 28. X. Sun, Y. Liu, J. Zhang, L. Hou, J. Sun and C. Yuan, *Electrochimica Acta*, 2019, **295**, 237-245.
- 29. D.-c. Zuo, S.-c. Song, C.-s. An, L.-b. Tang, Z.-j. He and J.-c. Zheng, *Nano Energy*, 2019, **62**, 401-409.
- 30. C. E. Ren, M. Q. Zhao, T. Makaryan, J. Halim, M. Boota, S. Kota, B. Anasori, M. W. Barsoum and Y. Gogotsi, *ChemElectroChem*, 2016, **3**, 689-693.
- 31. W. Zheng, P. Zhang, L. Yang, J. Chen, W. Tian, Y. Zhang and Z. Sun, *Ceramics International*, 2018, **44**, 22456-22461.
- 32. Q. Li, J. Zhou, F. Li and Z. Sun, *Inorganic Chemistry Frontiers*, 2020, **7**, 3491-3499.
- 33. D. Cao, M. Ren, J. Xiong, L. Pan, Y. Wang, X. Ji, T. Qiu, J. Yang and C. J. Zhang, *Electrochimica Acta*, 2020, 136211.
- 34. A. Yang, G. Zhou, X. Kong, R. A. Vilá, A. Pei, Y. Wu, X. Yu, X. Zheng, C.-L. Wu and B. Liu, *Nature nanotechnology*, 2020, **15**, 231-237.
- 35. S. Zhang, H. Liu, B. Cao, Q. Zhu, P. Zhang, X. Zhang, R. Chen, F. Wu and B. Xu, *Journal of Materials Chemistry A*, 2019, **7**, 21766-21773.
- 36. Z. Ma, X. Zhou, W. Deng, D. Lei and Z. Liu, ACS applied materials & interfaces, 2018, **10**, 3634-3643.
- 37. S. Xu, Y. Dall'Agnese, J. Li, Y. Gogotsi and W. Han, *Chemistry–A European Journal*, 2018, **24**, 18556-18563.
- 38. Z. Li, G. Chen, J. Deng, D. Li, T. Yan, Z. An, L. Shi and D. Zhang, *ACS Sustainable Chemistry & Engineering*, 2019, **7**, 15394-15403.
- A. M. Cao, J. S. Hu, H. P. Liang and L. J. Wan, Angewandte Chemie International Edition, 2005, 44, 4391-4395.
- 40. P. Zhang, R. A. Soomro, Z. Guan, N. Sun and B. Xu, *Energy Storage Materials*, 2020.
- 41. Y. Zhang, Z. Mu, J. Lai, Y. Chao, Y. Yang, P. Zhou, Y. Li, W. Yang, Z. Xia and S. Guo, *ACS nano*, 2019, **13**, 2167-2175.