SUPPORTING INFORMATION

Three-dimensional coral-like Zn,O-codoped Ni₃S₂ electrocatalyst for efficient overall water splitting at large current density

Liyun Cao, a Yifei Zhang, a Liangliang Feng, *a Danyang He, a Qianqian Liu, b Yingbo Gong, a

Guodong Li ^c and Jianfeng Huang *a

^a School of Material Science and Engineering, International S&T Cooperation Foundation of Shaanxi

Province, Xi'an Key Laboratory of Green Manufacture of Ceramic Materials, Key Laboratory of Auxiliary

Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and

Technology, Xi'an, 710021 P.R. China.

^b College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054,

China.

^C State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin

University, Changchun 130012, China

E-mail: fengll@sust.edu.cn huangjf@sust.edu.cn.

Figure S.1 (A) Raman spectra; (B) SEM image of NiZn-LDH.

Figure S.2SEM images of Ni_3S_2 samples grown on foamed nickel with different sulfur source
concentrations: (A) 0.0005 mol/L TAA; (B) 0.001 mol/L TAA; (C) 0.005 mol/L TAA ; (D) 0.01
mol/L TAA; Polarization curves of hydrogen evolution and oxygen evolution in 1 M KOH: (E)
HER polarization curves; (F) OER polarization curves.

Figure S.3 XRD patterns of Ni₃S₂/NF and ZO-Ni₃S₂/NF.

Figure S.4 (A,B) SEM images; (C) TEM images and (D) High-resolution TEM of Ni_3S_2/NF .

Figure S.5 Cyclic voltammograms at different speeds at a potential range of -0.88-1.02 V vs. RHE: (A) ZO-Ni₃S₂/NF; (B) Ni₃S₂/NF; (C) Summary of overpotential at 100, 500, and 1000 mA cm⁻² for ZO-Ni₃S₂/NF, Ni₃S₂/NF-np and 25% PtC/NF;(D) Multi-step chronoamperometric curves of HER over ZO-Ni₃S₂/NF.

Figure S.6 Cyclic voltammograms at different speeds at a potential range of 0.05-0.15 V vs. RHE:
(A) ZO-Ni₃S₂/NF; (B) Ni₃S₂/NF; (C) Multi-step chronoamperometric curves of OER over ZO-Ni₃S₂/NF; (D) The polarization curve of ZO-Ni₃S₂/NF-np for water splitting.

Figure S.7 SEM images (A-C) and (D-F) TEM images of ZO-Ni $_3S_2$ /NF after electrochemical test

Table S.1	The ICP	test data	of zinc	content i	n ZO-Ni ₂ S ₂ /NF
	I HC ICI	test aata		content h	

	1	2	3		
Initial Amount	9.81 mg				
Residual Amount	4.285 mg	4.771 mg	4.468 mg		
	Average: 4.508 mg				
NiZn-LDH/NF	5.302 mg				
Residual Amount	2.4 mg	2.1 mg	1.95 mg		
ZO-Ni ₃ S ₂ /NF	3.152 mg				

Catalyst	Overpotential (mV, at 100 mA cm ⁻²)	Overpotential (mV, at 500 mA cm ⁻²)	Tafel slope (mV dec ⁻¹)	Reference
ZO-Ni ₃ S ₂ /NF	145	235	102	This work
Cu-Ni ₃ S ₂ /Co ₃ S ₄ /NF	150	-	50.4	Appl. Catal. B Environ. 2021, 293, 120225
Ni _{2(1-x)} Mo _{2x} P	162	240	46.6	Nano Energy, 2018, 53, 492-500
Ni ₃ S ₂ @NiV-LDH/NF	256	~580	69	Nanoscale, 2019, 11, 8855-8863
NiFe ₂ O ₄ /NiFe LDH	-	297	67.1	ACS Appl. Mater. Interfaces 2018, 10, 31, 26283–26292
Ni ₃ S ₂ @NGCLs/NF	225	-	74	Chem. Eng. J. 2020, 401, 126045
Co-Ni ₃ S ₂ @CNTs/GNF	350	-	138	J. Mater. Chem. A, 2018, 6, 10490-10496
NiWO ₄ /Ni ₃ S ₂	274	-	112	Appl. Catal. B Environ. 2020, 274, 119120
δ-FeOOH/Ni ₃ S ₂ /NF	210	-	82.6	J. Mater. Chem. A, 2020,8, 21199-21207
NS-horn/NF	350	-	139	Appl. Catal. B Environ. 2019, 257, 117911
CoFe-OOH@Co ₂ P/NF	~230	-	76	Electrochimica Acta, 2020, 360:136994

Table S.2 Comparison of the HER catalytic performance of $ZO-Ni_3S_2/NF$ with other recently reported hydroxide-based electrocatalysts in alkaline solution.

catalyst	Overpotential (mV, at 100 mA cm ⁻²)	Overpotential (mV, at 500 mA cm ⁻²)	Tafel slope (mV dec- 1)	Reference
ZO-Ni ₃ S ₂ /NF	360	450	74.5	This work
Ni ₃ S ₂ NTFs	400	-	101.2	Appl. Catal. B: Environ. 2019, 243, 693-702
Ni _{2(1-x)} Mo _{2x} P	340	-	-	Nano Energy, 2018, 53, 492-500
Ni ₃ S ₂ @NiV-LDH/NF	320	~490	57	Nanoscale, 2019, 11, 8855-8863
Ni ₃ S ₂	400 @ 10 mA cm ⁻²	-	51	ACS Appl. Mater. Interfaces. 2018, 10, 12807-12815
Ni ₃ S ₂ -GQDs/NF	394	-	95.5	Small 2017, 13, 1700264
Fe-Ni ₃ S ₂ /FeNi	495	-	54	Small 2017, 13, 1604161
Ni(OH) ₂ /Ni ₃ S ₂	497	-	94.6	J. Mater. Chem. A 2018, 6, 6938-6946
Ni ₂ P/Ni ₃ S ₂ /NF	330	-	62	Nano Energy, 2018, 51, 26-36
NS-horn/NF	370	-	120	Appl. Catal. B Environ. 2019, 257, 117911
CoFe-OOH@Co ₂ P/NF	~220	-	39	Electrochimica Acta, 2020, 360:136994

Table S.3 Comparison of the OER catalytic performance of $ZO-Ni_3S_2/NF$ with other recently reported hydroxide-based electrocatalysts in alkaline solution.

catalyst	Water splitting potential (V, at 10 mA cm ⁻²)	Water splitting potential (V, at 100 mA cm ⁻²)	Reference
ZO-Ni ₃ S ₂ /NF	1.548	1.806	This work
Ni_3S_2 NTFs	1.611	-	Appl. Catal. B: Environ. 2019, 243, 693-702
Ni ₃ S ₂	2	-	ACS Appl. Mater. Interfaces. 2018, 10, 12807-12815
Ni ₃ S ₂ -GQDs/NF	1.58	-	Small 2017, 13, 1700264
Ni(OH) ₂ /Ni ₃ S ₂	1.57	-	J. Mater. Chem. A 2018, 6, 6938-6946
NS-horn/NF	1.57	~1.95	Appl. Catal. B Environ. 2019, 257, 117911
Cu-Ni ₃ S ₂ /Co ₃ S ₄ /NF	1.49	~1.85	Appl. Catal. B: Environ. 2021, 293, 120225
Ni ₃ S ₂ @NGCLs/NF	1.55	-	Chem. Eng. J. 2020, 401, 126045
δ-FeOOH/Ni ₃ S ₂ /NF	1.525	~1.84	J. Mater. Chem. A, 2020,8, 21199-21207
CoS _x /Ni ₃ S ₂ @NF	1.573	-	ACS Appl. Mater. Interfaces, 2018, 10, 27712–27722

Table S.4 Comparison of the water splitting performance of $ZO-Ni_3S_2/NF$ with other recently reported hydroxide-based electrocatalysts in alkaline solution.