# Electronic Supplementary Information

## **Supporting Information**

for

### A High-Energy Efficiency Membraneless Flowless Zinc Bromine Battery

## Enabled By High Concentration Hybrid Electrolyte

Siyang Liu<sup>a,b</sup>, Jing Wu<sup>a,b</sup>, Jiaqi Huang<sup>a,b</sup>, Xiaowei Chi<sup>a\*</sup>, Jianhua Yang<sup>a,b</sup>, Yu Liu<sup>a\*</sup>

Siyang Liu, Jing Wu, Jiaqi Huang, Prof. Xiaowei Chi, Prof. Jianhua Yang, Prof. Yu

Liu

<sup>a</sup>Shanghai Institute of Ceramics, Chinese Academy of Sciences

Shanghai 200050, China Email: xwchi@mail.sic.ac.cn Email: yuliu@mail.sic.ac.cn

<sup>b</sup>University of Chinese Academy of Sciences Beijing 100049, China



Figure S1. Raman spectra of  $ZnBr_2$  solution of different concentrations.



Figure S2. The Raman spectrum of 20 M  $ZnBr_2 + 10$  M LiCl electrolyte.

The impact of the LiCl to the solution structure was investigated by Raman spectrum. The full spectrum from 100 cm<sup>-1</sup> to 600 cm<sup>-1</sup> can be fitted to six peaks, which represents  $ZnBr_4^{2-}$ ,  $ZnBr_3^{-}$ ,  $ZnBr_2$ ,  $ZnBr^+$ ,  $ZnCl_x^{2-x}$  and  $Zn(H_2O)_6^{2+}$ , respectively. New complex species of  $ZnCl_x^{2-x}$  formed and the relative quantity of  $Zn(H_2O)_6^{2+}$  complex species reduced after the addition of 10 M LiCl.



**Figure S3**. Linear polarization curve of zinc anode in different concentration of ZnBr<sub>2</sub> solution.



**Figure S4.** SEM image of the surface of zinc foil immersed in 2 M and 20 M  $ZnBr_2$  solutions for different hours.



**Figure S5.** The SEM images of the surface of zinc foil charge/discharged at  $1 \text{ mA} \cdot \text{cm}^{-2}$ and 0.5 mAh·cm<sup>-2</sup> in (a) 20 M ZnBr<sub>2</sub> and (b) 20 M ZnBr<sub>2</sub> + 10 M LiCl for 100 cycles.



**Figure S6**. Photograph of different electrolyte during charging process under a current of 5 mA.



Figure S7. Raman spectra of different electrolyte after charging process of a capacity of 10 mAh.

#### Calculation of concentration of HBrO ([HBrO])

In an aqueous solution, the electrogenerated bromine species include  $Br_2$ ,  $Br_3^-$ , HBrO and BrO<sup>-</sup>, which mutually transform according to the following equations:

$$Br^{-} + Br_{2} \leftrightarrow Br_{3}^{-}, K_{1} = 16.9 M^{-1}$$
  

$$Br_{2} + H_{2}O \leftrightarrow HBrO + H^{+} + Br^{-}, K_{2} = 7.2 \times 10^{-9} M^{2}$$
  

$$HBrO \leftrightarrow BrO^{-} + H^{+}, K_{3} = 2.3 \times 10^{-9} M$$

By rearranging these equations to solve the [HBrO], the mole fraction of HBrO can be expressed as follow<sup>1</sup>:

$$\alpha_{HBr0} = \frac{K_2[H^+]}{[Br^-][H^+]^2 + K_1[Br^-]^2[H^+]^2 + K_2[H^+] + K_2K_3}$$

According to the calculation, in an acidic solution, the fraction of HBrO decreases with increasing  $[H^+]$  and  $[Br^-]$ , as is shown in Fig. S8. Therefore, due to the ultrahigh concentration of  $[Br^-]$  and low pH (namely the high concentration of  $[H^+]$ ) of the concentrated electrolyte, the content of HBrO in 20 M ZnBr<sub>2</sub> + 10 M LiCl was considerably much lower than that of the common Br<sub>2</sub>-containing electrolytes.



Figure S8. The relationship of the fraction of HBrO as a function of the concentration of  $Br^{-}$  and the pH value of solution.



**Figure S9**. (a) Coloumbic efficiency under different charge capacity; (b) Capacity-voltage curve in the process of charge and discharge under different capacity. The utilization rates of the electrolyte is c.a. 1.8%.

**Table S1.** Currently reported static membrane-free zinc bromine battery systems and

 the system developed in this work.

| System                  | CE  | EE  | Cycle number | Cycle life (h) |
|-------------------------|-----|-----|--------------|----------------|
| Density                 | 90% | 60% | 1000         | 4000           |
| separation <sup>2</sup> |     |     |              |                |
| Protonated N-           | 90% | 80% | 1000         | 2000           |
| doped                   |     |     |              |                |
| electrodes <sup>3</sup> |     |     |              |                |
| Interfacial             | 96% | 81% | 200          | 200            |
| battery <sup>4</sup>    |     |     |              |                |
| This work               | 98% | 88% | 2500         | 1000           |

#### References

- 1. M. Takahashi, K. Nakamura and J. Jin, *Electroanalysis*, 2008, 20, 2205–2211.
- 2. S. Biswas, A. Senju, R. Mohr, T. Hodson, N. Karthikeyan, K. W. Knehr, A. G. Hsieh, X. Yang, B. E. Koel and D. A. Steingart, *Energy Environ. Sci.*, 2017, **10**, 114–120.
- 3. J.-H. Lee, Y. Byun, G. H. Jeong, C. Choi, J. Kwen, R. Kim, I. H. Kim, S. O. Kim and H.-T. Kim, *Adv. Mater.*, 2019, **31**, 1904524.
- 4. P. Xu, C. Xie, C. Wang, Q. Lai, W. Wang, H. Zhang and X. Li, *Chem. Commun.*, 2018, **54**, 11626–11629.