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Characterization of catalyst

Nitrogen adsorption was carried out at 77 K with an ASAP 2010 apparatus to determine the
specific Brunauer—-Emmett-Teller (BET) specific surface area (Sggr) of the catalysts. Before each
measurements, the acidic resins were evacuated at 373 K for 6 h, metal catalysts were evacuated at
573 K for6h.

The XRD patterns of Ru-based catalysts were obtained with a PW3040/60X’ Pert PRO
(PANalytical) diffractometer equipped with Cu Ka radiation source (A = 0.15432 nm) at 40 kV and
40 mA.

The metal dispersions in Ru-based catalysts were measured with a Micromeritics AutoChem 11
2920 Automated Catalyst Characterization System by CO chemisorption. These values correspond to
the ratio of surface metal atoms to total metal atoms assuming that the stoichiometry of adsorbed CO
to surface metal atom is one. Before the tests, the samples were dried in helium flow at 393 K for 0.5
h and cooled down to 323 K. After the stabilization of baseline, the CO adsorption was carried out at
323 K by the pulse adsorption of 5% CO in He.

The high-resolution transmission electron microscopy (HRTEM) images of the Ru-based
catalysts were collected by a JEM-2100F field emission electronic microscope. Prior to
characterization, the catalysts were pretreated in hydrogen flow at 573 K for 3h. Before the tests, the
samples were first suspended in ethanol by an ultrasonic method then loaded onto a holey carbon
film supported by a nickel TEM grid.

General experimental details for NMR and GC-MS analysis
"H NMR and 3C NMR spectra were recorded at room temperature in CDCl; on Bruker AVANCE

III 400 MHz instrument. The chemical shifts for 'H NMR were recorded in ppm downfield using the



peak of CDCl; (7.26 ppm) as the internal standard. The chemical shifts for '*C NMR were recorded
in ppm downfield using the central peak of CDClI; (77.16 ppm) as the internal standard.

GC-MS analysis of the samples was carried out by Varian Corp 450GC/320MS which was
equipped with a HP-5 capillary column.
HDO of hydrogenated 1A

To better interpret the reason for the better HDO catalytic performance of the Ru/HAP + H-ZSM-
5 catalyst, we hydrogenated the HAA product (i.e. 1A) over a commercial Swt.% Pd/C catalyst and
used the hydrogenated 1A as the feedstock in the HDO process. The hydrogenation of 1A was
carried out in a stainless-steel batch reactor using ethyl acetate as the solvent. During the reaction,
hydrogen was continuously added into the batch reactor to maintain the system pressure around 4
MPa. After being hydrogenated at 393 K for 24 h, the furan rings and one benzene ring in 1A
molecule were completely saturated (see Figures S24-S25). Subsequently, we used the hydrogenated
1A (purified from the hydrogenation product by vacuum distillation) for the hydrodeoxygenation
under the same reaction conditions as we used for 1A (see Figure S26). As we expected, evidently
higher total carbon yield (93.3% vs. 82.8%) of C;, and C;; cycloalkanes were achieved from the
HDO of the hydrogenated 1A over the Ru/HAP + H-ZSM-5 catalyst. Meanwhile, it was noticed that
the molar ratio of Cy; cycloalkane/C;, cycloalkane also increased from 4.5 to 5.6 after using the

hydrogenated 1A as the feedstock for the hydrodeoxygenation step.



Table S1. Actual Ru contents in the Ru-based catalysts used in HDO process.

Catalyst Actual Ru content measured by ICP (wt.%)
Ru/HAP 1.89
Ru/AlLO; 2.02
Ru/C 1.86
Ru/Si0O, 1.87
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Figure S1. Gas chromatogram of the HAA product of 2-methylfuran and benzaldehyde. Reaction conditions: 323 K, 2 h;

40 mmol 2-methylfuran, 20 mmol benzaldehyde, 0.2 g Nafion resin were used in the test.
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Figure S2. Mass spectrogram of the HAA product of 2-methylfuran and benzaldehyde.
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Figure S3. 'TH-NMR and 3C-NMR spectra of the HAA product of 2-methylfuran and benzaldehyde.
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Figure S4. Conversion of 2-MF and the yields of 1A under the catalysis of different acids. Reaction conditions:

333 K, 5 h; 40 mmol 2-methylfuran, 20 mmol benzaldehyde and 1 mmol acid were used in each test.



Table S2. Effect of water on the catalytic performance of Nafion resin.

Catalyst Water Conversions of 2-MF (%) Yields of 1A (%)
Nafion - 73.3 533
Nafion 05¢g 50.0 15.5

Reaction conditions: 323 K for 2 h; 40 mmol 2-methylfuran, 20 mmol benzaldehyde, 0.2 g Nafion resin, 0 or 0.5 g

water were used in each test.
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Figure SS5. Gas chromatogram of the HAA product of 2-methylfuran and 4-methyl benzaldehyde. Reaction conditions:

323 K, 2 h; 40 mmol 2-methylfuran, 20 mmol 4-methyl benzaldehyde and 0.2 g Nafion resin were used in the test.
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Figure S6. Mass spectrogram of the HAA product of 2-methylfuran and 4-methyl benzaldehyde.
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Figure S7. 'TH-NMR and 3C-NMR spectra of the HAA product of 2-methylfuran and 4-methyl benzaldehyde.
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Figure S8. Gas chromatogram of the HAA product of 2-methylfuran and 2-methyl benzaldehyde. Reaction conditions:

323 K, 2 h; 40 mmol 2-methylfuran, 20 mmol 2-methyl benzaldehyde and 0.2 g Nafion resin were used in the test.
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Figure S9. Mass spectrogram of the HAA product of 2-methylfuran and 2-methyl benzaldehyde.
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Figure S10. 'H-NMR and 3C-NMR spectra of the HAA product of 2-methylfuran and 2-methyl benzaldehyde.
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Figure S11. Gas chromatogram of the HAA product of 2-methylfuran and vanillina. Reaction conditions: 323 K, 2 h; 40

mmol 2-methylfuran, 20 mmol vanillina and 0.2 g Nafion resin were used in the test.
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Figure S12. Mass spectrogram of the the HAA product of 2-methylfuran and vanillina.



RGZ-417THAA-3:10. fid
zgpr CDC13 {B:\NMR400\1502} nmr-new 17

ot ©

—5.25
3.83
3.82

Calss

// | OH

(m
5. 86

1H NMR (400 MHz, Chloroform-) 56.85 (dd, J= 8.1, 1.2
6.70 (m, 2H), 5.90 — 5.82 (m, 4H), 5.53 (s, 1H), 5.25 (s, 1H)
Hz, 3H), 2.24 (s, 6H).

H| (@) T ()
4.83 4 24

Hz, 1H), 6.81 —
3.83(d, J=1.2

L 7000

L 6500

L 6000

L 5500

L 5000

L 4000

L 3500

L3000

L2500

L2000

L 1500

L 1000

0.66.30. 6Lbp
0.96.360. 91 o

3,218, 00fe—

T
8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 ~1.0

£1 (ppm)

RGZ-417HAA-3.
C13CPD [CDC1

11. fid
{D\NMR40Q\ 1502} nmr—new 1

131,89

55. B8
7
13.64

12118
44. 79

B3C
131.89, 121.18, 1[14.24, 11

NMR (101 MHz, Chlaroform-?) 5153.12, 151.40, 146.41,144.61,
.02, 108.03, 106.05, 55.88, 44.79, 13.64.

D (s)
144. 61

B (s)
151. 40

| ()
6. 08

3

J]{s)
108} 03

©
©

A (s)
153.12

E—(s)
131. 89

L —500

|- 3800

- 3600

|- 3400

3200

- 3000

|- 2800

2600

2400

2200

2000

L 1800

- 1600

- 1400

1200

L 1000

L 800

L 600

400

200

0.50
0.51—
0. 49—
0. 90—

21 0 190 180 170

Figure S13. 'H-NMR and BC-NMR spectra of the HAA product of 2-methylfuran and vanilla

- —200




FID1 A, 5823 (RGZ2020-5.15X/Y2020_GC 2020-07-13 17-04-27:20680801.0)

Internal standard

- RuHAP %\A ]

Y Kl

4t . - S

FID1 A #1583 (RGZ2020-5.15RGZ2020_GC 2020-07-12 12-30-05204B0401.0)

Ru/A1203

1Y

- - . "
4 3

FID1 A, #1#&F (RGZ2020-5.15\Y1.2020_GC 2020-07-17 08-14-541207B0701.0)

mé Ru/C

| A

|

T T
4 [}

FIDTA, S84 (RGZ20205 15RGZN20 GG 202047-15 15:39-10120280201 0)

Ru/Si0,

i

Oxygenates

Figure S14. Gas chromatogram of the HDO products of 1A under the different Ru-based catalyst. Reaction conditions:

453 K, 4 MPa H,, 24 h; 0.1 g 1A, 0.1 g Ru-based catalyst and 0.1 g H-ZSM-5, 50 mL cyclopentane were used in the test.
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Figure S15. Mass spectrogram of the Cy7 and C;, cycloalkanes from the HDO of 1A.
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Figure S16. Conversions of cycloalkanes and the yields of aromatic hydrocarbons over the Pd/C catalyst. Reaction

conditions: 533 K, 12 h; 0.3 g Cy, or Cy; cycloalkane produced during the HDO step, 0.1 g Pd/ C, 30 mL heptane

were used in the test.
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Figure S17. Gas chromatogram of the product from the dehydrogenation of C,, cycloalkane over the Pd/C catalyst.

Reaction conditions: 533 K, 12 h; 0.3 g C, cycloalkane, 0.1 g Pd/ C, 30 mL heptane were used in the test.
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Figure S19. Gas chromatogram of the product from the dehydrogenation of C,; cycloalkane over the Pd/C catalyst.

Reaction conditions: 533 K, 12 h; 0.3 g C, cycloalkane, 0.1 g Pd/ C, 30 mL heptane were used in the test.
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Figure S20. Mass spectrogram of the C;; aromatic hydrocarbon generated from the dehydrogenation of C;;

cycloalkane from the HDO of 1A.
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Figure S21. Conversions of dimethyl terephthalate (DMT) and the yields of dimethyl cyclohexane dicarboxylate
(DMCD) over different Ru-based metal catalysts. Reaction conditions: 373 K, 5 MPa H,, 7 h; 30 g DMT and 1 g catalyst

were used in each test.
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Figure S22. Gas chromatogram of DMCD from the hydrogenation of DMT over Ru/SiO, catalysts. Reaction conditions:

373 K, 5 MPa H,, 7h; 30 g DMT and 1 g catalyst were used in the test.
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Figure S24. Gas chromatogram of the hydrogenation product of 1A over the Pd/C catalyst. Reaction conditions:

393 K,4 MPa H,, 24 h; 5 g 1A, 0.25 g Pd/C and 40 mL ethyl acetate were used in the test.
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Figure S26. Carbon yields of different products and the molar ratio of C;; to C,, cycloalkane from the HDO of 1A
(or hydrogenated 1A) under the co-catalysis of Ru/HAP + H-ZSM-5 catalyst. Reaction conditions: 453 K, 4 MPa

H,, 24 h; 0.1 g 1A, 0.1 g Ru/HAP and 0.1 g H-ZSM-5, 50 mL cyclopentane were used in each test.



