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Extended discussion on the selection of the DoH range for assessing the productivity:

It can be seen from Figure 4 and Figure 5 that the hydrogenation rate is quite constant up to a 

DoH of 90% (probably due to mass transfer limitations in the system) so that the error 

introduced by the DoH evaluation range is less significant than the error introduced by these 

temperature fluctuations. Note, though, that the productivity values of the hydrogenation cycle 

are very likely affected by mass transfer limitations that could not be avoided in the 

experimental setup applied.
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Schematic flow diagram:

Figure S1 shows the schematic flow diagram used for the semi continuous experiments for 

hydrogenation/ dehydrogenation cycling as described in the experimental section.
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Figure S1: Schematic flow diagram of the plant set-up used in this study.
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GC method:

Figure S2 shows the processed chromatogram of a typical Hx-BT reaction mixture with low 

degree of hydrogenation (DoH). The integration ranges of the major components H12-BT, 

H6-BT, H0-BT, Methylfluorenes, Anthracenes and further heavy boilers and are indicated by 

dashed vertical lines.

Figure S2: Gaschromatogram showing ranges of H12-BT (with 6 peaks), H6-BT (with 

9 peaks), H0-BT (with 3 peaks), and methylfluorenes (with 4 peaks)
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Viscosity:

Figure S3 depicts viscosities of fully dehydrogenated and fully hydrogenated LOHC systems 

of BT and DBT. Values are calculated from the correlation given by Müller et al..S1 The 

viscosities are plotted on a logarithmic scale since BT species have viscosities one to two orders 

of magnitude lower than DBT species.
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Figure S3: Viscosity of H0-LOHC and perhydro-LOHC
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Fluorene derivatives:S2, S3

1-Methylfluorene 2-Methylfluorene 3-Methylfluorene 4-Methylfluorene

1-,2-,3-,4-methylfluorene

6 possible perhydrofluorene isomers exemplifying the many
perhydromethylfluorenes that may occur
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path to DBT fluorene derivatives as dehydrocyclization products
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Figure S4:Illustration of four methylfluorene isomers, six perhydrofluorene isomers, six 

H0-DBT isomers and an exemplary dehydrocyclication pathway for an H0-DBT isomer.
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Chemical equilibrium overall sigmoidal fit to data points:

The coefficients b and c from singular fits to every isobaric equilibrium curve were used to 

determine the pressure dependency of the equilibrium. In line with the good approximation 

achieved for DBT, a linear function was assumed for coefficient b. A logarithmic relation was 

chosen for coefficient c. Internal cross validation with leave more out (LMO) technique was 

conducted. Multiple training sets with each 7 out of 9 temperature ramps and with 2 remaining 

temperature ramps as test sets were generated. Each of these training sets was fitted and tested 

separately (see Figure S5 Left and Right). By comparing the mean deviation of the test fits, the 

final coefficient fit functions were found. The corresponding relations are given in equation (6) 

and (7).
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React ion Pressure [bara]

Equat ion y=  m*x +  n

Intersect ion y-axis 0.06206 ±  0.00633

Slope 0.00176 ±  0.0012

SSR 2.17961E-4

R-Squared 0.34888
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]

React ion Pressure [bara]

Model Log3P1

Equat ion y =  u - v* ln(x+ w)

u 443.46876 ±  208.60884

v 99.02783 ±  63.04248

w 5.73037 ±  6.22428

R-squared 0.98248

Figure S5 Left: Coefficient b as a function of pD. Values obtained from single fit of 

experimental data. Figure S5 Right: Coefficient c as a function of pD. Values obtained from 

single fit of experimental data
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