Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2021

Mesocrystal TiO₂ films: In-situ Topotactic Transformation and Application in Dye-Sensitised Solar Cells

Bingyu Lei,^a Arivazhagan Valluvar Oli^b, Aruna Ivaturi^b and Neil Robertson *a

Supporting Information

$$C_4H_9$$
 C_4H_9
 C_4H_9
 C_4H_9
 C_4H_9

Figure S1: Molecular structure of LEG4.

Table S1: Comparison between NH₄TiOF₃ paste and commercial TiO₂ pastes.

	NH ₄ TiOF ₃ paste	Ti-Nanoxide T/SP	Ti-Nanoxide D/SP	Ti-Nanoxide R/SP
Abbreviation	F	Т	D	R
TiO ₂ particle size	200~350 nm	15-20 nm	15-20 nm +	>100 nm
			diffusing particles	
TiO ₂	/	~ 18 wt.%	~ 18 wt.%	~ 18 wt.%
concentration				
Ti concentration	~ 10.8 wt.%	~ 10.8 wt.%	~ 10.8 wt.%	~ 10.8 wt.%

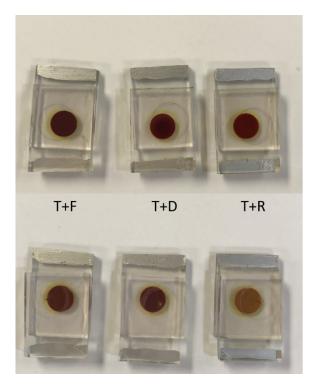


Figure S2 Digital pictures of the example DSSCs from working electrode side (top) and counter electrode side (down). T+F means the photoanode is composed with 1 layer of TiO_2 made from commercial paste Ti-Nanoxide T/SP and 1 layer of TiO_2 made from NH_4TiOF_3 paste. D: Ti-Nanoxide D/SP; R: Ti-Nanoxide R/SP.

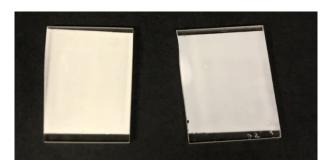


Figure S3 A digital photo of the doctor-bladed films from NH_4TiOF_3 paste (left) or commercial paste Ti-Nanoxide D/SP (right), followed by a sintering process at at 500 °C for 2 hours with a heating rate of 2 °C/min

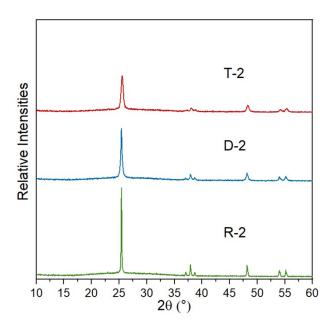


Figure S4: XRD patterns of TiO_2 films from commercial available pastes (Ti-Nanoxide T/SP, Ti-Nanoxide D/SP, Ti-Nanoxide R/SP) sintered at 500 °C for 2 hours with a heating rate of 2 °C/min.

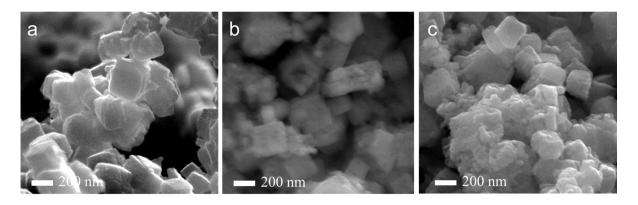


Figure S5: SEM images of mcTiO $_2$ films from NH $_4$ TiOF $_3$ paste sintered at 500 °C for 2 hours with different heating rate, namely (a) 1 °C/min, (b) 5 °C/min, (c) 10 °C/min.

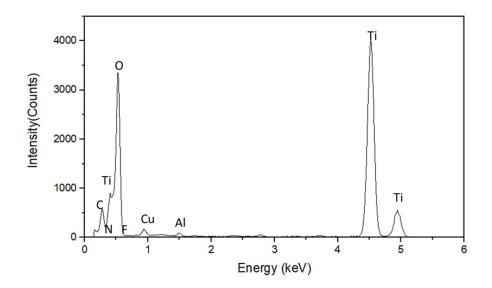


Figure S6: EDS spectrum of $mcTiO_2$ sintered sintered at 500 °C for 2 hours with a heating rate of 2 °C/min.

Table S2: Elemental composition of mcTiO₂ from TEM-EDS analysis.

Element	Atomic fraction (%)	Mass fraction (%)
N	1.09	0.507
0	54.5	28.9
F	0.0147	0.00928
Ti	44.4	70.6

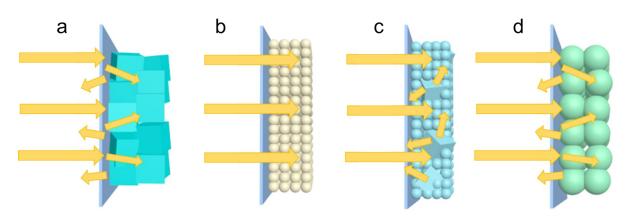


Figure S7: Schematic illustrations of the light path in DSSCs with different TiO_2 as photoanodes. (a) mesocrystal TiO_2 from NH_4TiOF_3 paste, (b) transparent TiO_2 from Ti-Nanoxide T/SP, (c) diffractive TiO_2 from Ti-Nanoxide T/SP, (d) reflecting TiO_2 from Ti-Nanoxide T/SP.

Table S3: Comparison of some EIS parameters between different single-layer photoanodes.

	$R_s(\Omega)$	$R_{Pt}(\Omega)$	$R_{rec}(\Omega)$	C _μ (μF)	α	β
TiO ₂	Fitted parameters from Nyquist plot under -			Extracted from	Extracted from	
	0.7 V bias under white LED illumination			InC_{μ} v.s. bias	InR _{rec} v.s. bias	
F	12.15	31.84	360.9	126.4	0.40	0.72
Т	13.22	44.65	244.0	192.2	0.26	0.66
D	12.58	50.79	525.6	113.3	0.30	0.61
R	12	60.97	2166	40.26	0.18	0.50

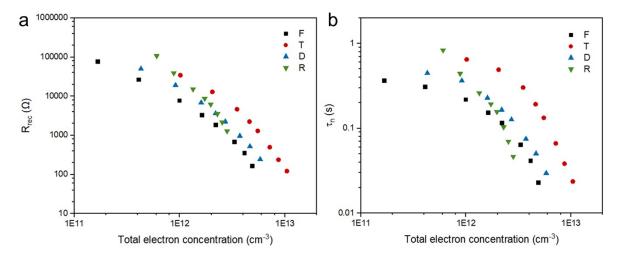


Figure S8: (a) Recombination resistance and (b) electron lifetime of single-layer photoanodes as a function of total electron concentration.

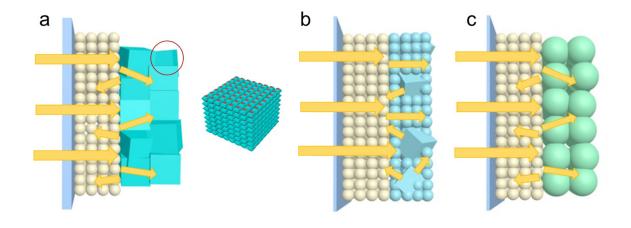


Figure S9: Schematic illustrations of the photoanodes with different scattering layer. (a) mesocrystal TiO_2 , (b) diffractive TiO_2 , (c) reflecting TiO_2 .

Table S4: Comparison of some EIS parameters between different two-layer photoanodes.

TiO ₂	α	β	
T+F	0.31	0.69	
T+D	0.31	0.64	
T+R	0.29	0.64	

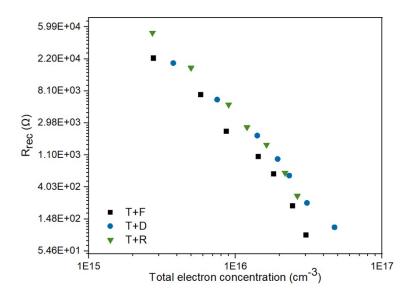


Figure S10: Recombination resistance of two-layer photoanodes as a function of total electron concentration.

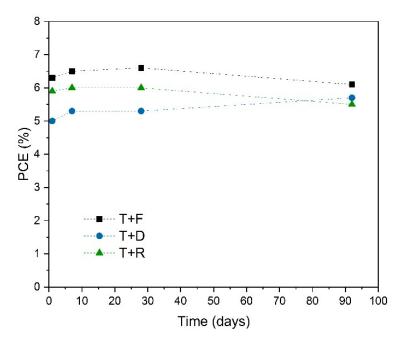


Figure S11 PCE records of DSSCs based on different photoanodes. Devices were kept in dark at the ambient condition.