Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Enhancing the long-cycling performance of LiNi_{0.8}Co_{0.15}Al_{0.05}O₂@LaNiO₃

cathode material by Surface Modification

Ju Fan^[a,b], Guorong Hu^[a,b], Haodong Su^[a,b], You Shi^[a,b], Ke Du^[a,b], Zhongdong Peng^[a,b], Qian Sun^[a,b], Yinjia Zhang^[a,b], Kaipeng Wu^[c,d] and Yanbing Cao^{*[a,b]}

^a School of Metallurgy and Environment, Central South University, Changsha, 410083, China

^b Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Central South University, Changsha, 410083, China

^c College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China

^d School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.

Experimental S1

The dissolved amount of transition metal is investigated by the following steps: immerse the uncirculated positive electrode in the electrolyte (vacuum oven) at 55°C, and take out 10ml of the electrolyte after 1-3 weeks to analyze the content.

Figure S1. XRD patterns of (a) pristine NCA, NCA@LN0.5, NCA@LN1, and NCA@LN2, (b) NCA@LN5.

Figure S2. XRD patterns of LaNiO₃.

Figure S3. XRD patterns of (a) NCA@LN0.5 and (b) NCA@LN2 cathode materials; The crystal structures of (c) NCA@LN0.5 and (d) NCA@LN2 cathode materials by Rietveld refinement.

Figure S4. C 1s spectra of pristine NCA and NCA@LN1.

Figure S5. Dissolved amounts of metals of Ni, Co, and Al under different storage times at 55 °C.