Supporting Information

A metal-organic framework approach to engineer mesoporous ZnMnO$_3$/C towards enhanced lithium storage

Xi Hu, Qianhong Huang, Yuze Zhang, Hao Zhong, Zhi Lin, Xiaoming Lin,* Akif Zeb,* Chao Xu* and Xuan Xu*

Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, P.R. China.
Fig. S1 Raman spectrum of ZnMnO$_3$/C.

Fig. S2. XRD patterns of ZnMnO$_3$/C calcinated at 600, 700 and 800 °C.
Fig. S3. Cycling performance of ZnMnO$_3$/C at 1 A g$^{-1}$

Fig. S4. XRD patterns of the ZnMnO$_3$/C electrode after 20 cycles of the charge process.
Fig. S5. XRD patterns of the ZnMnO$_3$/C electrode after 20 cycles of the discharge process.

Fig. S6. XRD pattern of ZnMnO$_3$.
Fig. S7. Raman spectrum of ZnMnO$_3$.

![Raman spectrum](image)
Fig. S8. (a) CV curves of ZnMnO$_3$ electrode at different sweep rates; (b) A linear relationship between log (scan rate) and log (peak current); (c) Typical capacitive contribution of ZnMnO$_3$ electrode at 2.0 mV s$^{-1}$; (d) Contribution ratios of capacitance at different scan rates.

<table>
<thead>
<tr>
<th>Electrode materials</th>
<th>Cycle capacity (mAh g$^{-1}$)</th>
<th>Cycle number</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnMnO$_3$ porous spherulites</td>
<td>729/0.5 A g$^{-1}$</td>
<td>50</td>
<td>S1</td>
</tr>
<tr>
<td>Hierarchical porous ZnMnO$_3$ yolk-shell microspheres</td>
<td>540/0.4 A g$^{-1}$</td>
<td>300</td>
<td>S2</td>
</tr>
<tr>
<td>Porous ZnMnO$_3$</td>
<td>560/0.4 A g$^{-1}$</td>
<td>300</td>
<td>S3</td>
</tr>
<tr>
<td>Multi-shelled ZnMnO$_3$ hollow micro-spheres</td>
<td>290/0.4 A g$^{-1}$</td>
<td>150</td>
<td>S4</td>
</tr>
<tr>
<td>1D ZnMnO$_3$</td>
<td>382.9/0.8 A g$^{-1}$</td>
<td>100</td>
<td>S5</td>
</tr>
<tr>
<td>MOF-derived ZnMnO$_3$/C</td>
<td>460/1 A g$^{-1}$</td>
<td>500</td>
<td>This work</td>
</tr>
</tbody>
</table>

References
(S3) C. H. Zhao, Z. G. Teng, D. N. Zhao, Z. B. Hu and K. Y. Liu, Porous ZnMnO$_3$ plates prepared from Zn/Mn–sucrose composite as high-
