Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2021

Supporting information

for

Mn, P Co-doped Sharp-edged Mo₂C Nanosheets Anchored on Porous

Carbon for Efficient Electrocatalytic Hydrogen Evolution

Zongyun Mu^{a, c}, Ting Guo^a, Hao Fei^a, Dingsheng Xu^b, Yaoqing Mao^c, Zhuangzhi Wu^{a, *}, Dezhi Wang^{a,}

^a School of Materials Science and Engineering, Central South University, Changsha 410083, China

^b Sinosteel Tianyuan Co. Ltd., Ma'anshan 241000, China

^e Hunan Special Metal Materials Co. Ltd., Changsha 410013, China

E-mail address: zwu@csu.edu.cn; dzwang@csu.edu.cn

Experiment

Materials

Potassium hypophosphite (KH₂PO₂), phosphomolybdic acid (H₃O₄₀PMo₁₂), citric acid (C₆H₈O₇), potassium hydroxide (KOH), potassium chloride (KCl) and manganese (II) acetate tetrahydrate (Mn(CH₃COO)₂·4H₂O) were provided by Shanghai Aladdin Biochemical Technology. Ethanol was purchased from Beijing Chemical Corp. Nafion solution (5 wt%) was obtained from DuPont Company (USA). Sulfuric acid (H₂SO₄, 98%) was provided by Xilong Chemical Co., Ltd. All chemicals were used as received without further treatment.

Synthesis of bulk b-0Mn-Mo₂C and Mn-Mo₂C NS

Typically, for the synthesis of 0.08Mn-Mo₂C NS, 4.2 g citric acid ($C_6H_8O_7$) and 3.36 g KOH were dissolved in 100 mL deionized water and stirred for 1 h to form a transparent solution (marked as solution A). Meanwhile, 0.912 g (0.5 mmol) H₃O₄₀PMo₁₂, 3.33 g KH₂PO₂, 10 g KCl and 19.6 mg (0.08 mmol) Mn(CH₃COO)₂· 4H₂O were mixed by stirring at 90 °C for 1 h to obtain a dark blue solution (marked as solution B). Then, solution B was poured into solution A and kept stirring at 90 °C until the water was completely removed, following by drying at 180 °C for 2 h. Subsequently, the harvested precursor was put downstream in a ceramic boat with 0.025g KH₂PO₂ at the upstream of tube furnace. The system was calcined at 750 °C for 2 h with a heating rate of 7 °C min⁻¹ in argon flow, then cooled down naturally to room temperature. Next, the calcined precursor was ground into powder using an agate mortar, then washed with 0.5 M H₂SO₄ and deionized water by ultrasonication for several times. After being dried at 40 °C for 24 h in vacuo, the as-prepared reaction product was collected and denoted as 0.08Mn-Mo₂C NS. According to the different feeding amount of Mn(CH₃COO)₂· 4H₂O from 0 to 0.5 mmol, the xMn-Mo₂C NS (x=0, 0.01 and 0.16 mmol) products were also synthesized using the same procedure. Additionally, the bulk Mo₂C without Mn doping (denoted as b-0Mn-Mo₂C) was also obtained by employing the same procedure as 0.08Mn-Mo₂C NS in the absence of KCl and Mn(CH₃COO)₂·4H₂O.

Synthesis of pure Mo₂C NS

Pure Mo₂C NS without Mn or P doping was synthesized following the same procedure as 0.08Mn-Mo₂C NS excepting that $0.5 \text{ mmol } H_3O_{40}$ PMo₁₂ was replaced by $0.857 \text{ mmol } (NH_4)_6$ Mo₇O₂₄·4H₂O in the absence of Mn(CH₃COO)₂·4H₂O and KH₂PO₂.

Synthesis of Mo₂C NS doped without P dopant

0.08mmol Mn doped Mo₂C NS without P dopant was synthesized following the same procedure as 0.08Mn-Mo₂C NS excepting that 0.5 mmol $H_3O_{40}PMo_{12}$ was replaced by 0.857 mmol (NH₄)₆Mo₇O₂₄·4H₂O in the absence of KH₂PO₂.

Synthesis of 0.08Mn doped Mo₂C NS prepared with various P addition

0.08mmol Mn doped Mo₂C NS prepared with various P addition was synthesized following the same procedure as 0.08Mn-Mo₂C NS excepting that 3.33 g KH₂PO₂ was replaced by 2.22 g KH₂PO₂ or 4.44 g KH₂PO₂. And the corresponding specimen was marked as 0.08Mn-Mo₂C-2.22 NS and 0.08Mn-Mo₂C-4.44 NS, respectively.

Preparation of working electrodes

The working electrode was prepared in a typical procedure. 3 mg of the measured material was dispersed in a mixture of Nafion solution (5 wt%, 80 μ L), ethanol (200 μ L) and distilled water (800 μ L), and then ultrasonicated for 30 min to get a dark slurry. Afterwards, 5 μ L of the slurry was pipetted onto a smooth glass carbon electrode in 3 mm, then dried in air for 5 h. The mass loading of the catalyst was calculated to be 0.213 mg cm⁻².

Characterizations

The X-ray diffraction (XRD) patterns were collected by D/max 2500 X-ray diffractometer using a Cu K α radiation. The morphology and microstructure were observed using FEI Sirion 200 scanning electron microscopy (SEM) and JEOL 2100F transmission electron microscope (TEM) equipped with quantitative X-ray spectroscopy capabilities for element distribution analysis. The surface compositions and element chemical states were detected by X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific K-ALPHA) with an Al Ka radiation using C 1s (284.6 eV) as a reference. Brunauer-Emmett-Telle (BET) surface area and the pore size distribution were acquired on Quadrasorb SI-3MP with nitrogen adsorption at 77 K. The Mn and P content was determined by inductively coupled plasma (ICP-OES, Agilent 725).

Electrochemical measurements

The electrochemical experiments were conducted on an electrochemical workstation (CHI 660E) with a three-electrode system in 0.5 M H₂SO₄. The saturated calomel electrode (SCE), the as-prepared glassy carbon electrode and the graphite rod were used as the reference electrode, working electrode and counter electrode, respectively. To assess the activity, the linear sweep voltammograms were adopted in the range from 0.1 V to 0.4V at 2 mV s⁻¹. Electrochemical impedance spectroscopy (EIS) was applied from 1 MHz to 1 Hz with an amplitude of 5 mV at an overpotential of 0.2 V. The cyclic voltammetry (CV) curves were obtained from 0 to 0.3 V at various scan rates (20, 40, 60, 80, 100, 120 and 140 mV s⁻¹) to deduce the electrochemical double-layer capacitances (C_{dl}) and electrochemically active surface area (ECSA). The slopes *k* of the fitting line from current density variation plotted against scan rate curves were obtained, and C_{dl} = k/2.

The ECSA was calculated according to the following formula¹:

$$A_{ECSA} = \frac{e e e c trochemical capacitance}{40 \ \mu F \ cm^{-2} \ per \ cm_{ECSA}^{2}}$$

The turnover frequency (TOF) can be calculated by the formula below:

$$\frac{\text{no. of total hydrogen turnovers cm}^{-2} \text{ of geometric area}}{\text{TOF}=} \frac{\text{no. of active sites cm}^{-2} \text{ of geometric area}}$$

The total number of hydrogen turnovers per current density can be calculated using the formula:

No. of H₂ = (per
$$\frac{\text{mA}}{\text{cm}^2}$$
)($\frac{1 \text{ C s}^{-1}}{1000 \text{ mA}}$)($\frac{1 \text{ mol of e}}{96485.3 \text{ C}}$)($\frac{1 \text{ mol of H}_2}{2 \text{ mol of e}}$)($\frac{6.022 \times 10^{23} \text{H}_2 \text{ molecules}}{1 \text{ mol of H}_2}$)
= $3.12 \times 10^{15} \frac{\text{H}_2 \text{ s}^{-1}}{\text{cm}^2} \text{ per } \frac{\text{mA}}{\text{cm}^2}$

Due to the uncertainty of real hydrogen adsorption site, the number of active sites was evaluated from the surface sites, where Mo and C atoms act as possible active sites. On the basis of roughness factor and the unit cell of Mo_2C (volume of 37.2 Å³), the number of active sites per real surface area is given by the following formula:

no. of active sites =
$$\left(\frac{2\frac{atoms}{unit \ cell}}{37.2\frac{\mathring{A}^3}{unit \ cell}}\right)^{2/3} = 1.42 \times 10^{15} \ atoms \ cm_{real}^{-2}$$

Finally, plots of the current density can be converted into TOF plots according to:

$$TOF = \frac{\left(3.12 \times 10^{15} \frac{H_2/s}{cm^2} \, per \, \frac{mA}{cm^2} \times |j|\right)}{\left(1.42 \times 10^{15} \, atoms \, cm_{real}^{-2}\right) A_{ECSA}}$$

The long-term stability of the catalysts was assessed by continuous CV scanning and chronoamperometry. All the potentials reported in this work were referenced to a reversible hydrogen electrode based on the Nernst equation ($E_{RHE} = E_{SCE} + 0.059*pH + 0.209$) without iR corrections.

Computational details

The density functional theory (DFT) calculations were conducted using VASP (Vienna ab initio simulation package) within the projector-augmented plane wave pseudopotentials to process the ion-electron interactions. The electronic exchange and correlation effects were modeled by the Perdew-Burke-Ernzerhof (PBE) of Generalized Gradient Approximation (GGA). The model of β -Mo₂C was constructed based on Wang's work². A periodic 4 × 4 × 1 supercell with a Γ -centered 2 × 2 × 1 k-point grid was used to conduct the surface analysis and calculation in Brillouin zone. A cutoff energy of 520 eV was set for the plane-wave basis. The Mo₂C (001) surface was established to calculate the Gibbs free energy of hydrogen adsorption (ΔG_{H^*}), where 15 Å vacuum above the surface was taken into consideration. ΔG_{H^*} was calculated using the following equation:

$$\Delta G = E_{\text{total}} - E_{\text{surface}} - 1/2E_{\text{H2}} + \Delta E_{\text{ZPE}} - T\Delta S$$

where E_{total} , $E_{surface}$, E_{H2} , ΔE_{ZPE} and ΔS were referred to total energy for the surface with H adsorption, the surface without H adsorption, the energy of H₂ in gas phase, the zero-point energy change and the entropy change, respectively. In vaspkit 501 function mode, ΔE_{ZPE} and ΔS were calculated as G(T) on account of frequency calculation. Finally, in reference of the investigation form Nørskov, ΔG_{H^*} was calculated as follows:

$$\Delta G_{H*} = \Delta E_{H*} + 0.24 \text{ eV}$$

where $\Delta E_{H^*} = E_{total} - E_{surface} - 1/2E_{H2}$.

Q Is		Lattice constant / Å			
Sample	Grain size / him	a b		С	
0Mn-Mo ₂ C NS	22.7	3.0168	3.0168	4.7401	
0.01Mn- Mo ₂ C NS	21.3	3.0137	3.0137	4.7391	
0.08Mn- Mo ₂ C NS	21.2	3.0104	3.0104	4.7366	
0.16Mn- Mo ₂ C NS	21.0	3.0040	3.0040	4.7360	

Table S1 The calculated lattice constants and grain sizes of samples.

Fig. S1 SEM image of b-0Mn-Mo₂C.

Fig. S2 Nitrogen adsorption-desorption isotherms of (a) b-0Mn-Mo₂C and (b) 0.08Mn-Mo₂C NS.

Fig. S3 Pore size distribution curve of 0.08Mn-Mo₂C NS.

Mn wt%		
0		
0.08		
0.69		
1.38		

Table S2 Mn contents of various electrocatalysts measured by ICP.

_

Fig. S4 XPS survey of 0.08Mn-Mo₂C NS.

Catalysts	Loading (mg cm ⁻²)	Current density	Overpotential at the corresponding	Tafel slope (mV dec ⁻¹)	Ref
		j (mA cm ⁻²)	j (mV)		
Mn, N-Mo ₂ C-0.01	~0.55	10 -163		66	3
Mo ₂ N-Mo ₂ C/HGr-3	~0.337	10	10 -157		4
Mo ₂ C/CNT-GR	~0.65	10	-130	58	5
Mo-Mo ₂ C-0.077	~0.38	10	-150	55	6
Mo ₂ C-GNR	/	10	-152	65	7
Co-Mo ₂ C-0.020	0.14	10	-140	39	8
Co-NC@Mo ₂ C	~0.83	10	-143	60	9
Mo ₂ C@NC	0.5	10	-36	33.7	10
uf-Mo ₂ C/CF-2	0.25	10	-184	71	11
Mo ₂ C/C (2:2)	0.28	10	-180	71	12
P-Mo ₂ C@C	1.3	10	-89	42	13
N, P-Mo ₂ C@C	0.9	10	-141	56	14
Biochar-derived	0.010	10			15
Mo ₂ C	0.213	10	-161	57	13
Mn, P co-doped					This
0.08Mn-Mo ₂ C NS	0.213	10	-180	52	work

Table S3 Comparison of the electrocatalytic activity over 0.08Mn-Mo₂C NS with other related electrocatalysts for HER in 0.5 M H₂SO₄.

Fig. S5 Electrochemical performances of various samples in 0.5 M H₂SO₄: (a) Polarization curves; (b) Tafel plots.

Fig. S6 Electrochemical capacitance measurements in 0.5 M H₂SO₄: (a) b-0Mn-Mo₂C; (b) 0Mn-Mo₂C

NS; (c) 0.01Mn-Mo₂C NS; (d) 0.08Mn-Mo₂C NS and (e) 0.16Mn-Mo₂C NS.

Fig. S7 (a) SEM and (b) TEM images of the morphology and structure of 0.08Mn-Mo₂C NS after long-

time stability test.

Fig. S8 (a) LSV and (b) Tafel slope of 0.08Mn doped Mo₂C NS prepared with various P addition

Sample	P wt%		
0.08Mn-Mo ₂ C-2.22 NS	0.9		
0.08Mn-Mo ₂ C NS	1.8		
0.08Mn-Mo ₂ C-4.44 NS	2.9		

Table S4 The P content in 0.08Mn doped Mo_2C NS prepared with various P addition.

	The			Tafel	Overpotential at
Model	corresponding	Active site	$ riangle G_{\mathrm{H}^*}$ eV	mV	Current density
	catalyst in the			41	Of 10 4
	work			dec	Of 10 mA cm ⁻²
pure Mo ₂ C	pure Mo ₂ C NS	Mo site	-0.1865	89	-305
P doped Mo ₂ C	0Mn-Mo ₂ C NS	Mo site	-0.1212	63	-264
		P site	0.1143		
Mn doped Mo ₂ C	0.08 mmol Mn	Mo site	-0.4075	99	-345
	doped Mo ₂ C NS	Mn site	-0.4446		
Mn, P co-doped Mo ₂ C	0.08Mn-Mo ₂ C o ₂ C NS	Mo site	-0.0643		
		Mn site	-0.0094	52	-180
		P site	-0.0269		

Table S5 The calculated Gibbs free energies (ΔG_{H^*}) for H adsorption on the different active sites in each atomic model and the corresponding HER performance.

Fig. S9 (a) Theoretical structural models of Mn, P co-doped Mo₂C; Corresponding adsorption of H* on

(b) Mn site and (c) P site.

Fig. S10 Theoretical structural models of pure Mo_2C with the most stable adsorption of H* on Mo site.

Fig. S11 Theoretical structural models of Mn doped Mo₂C with the most stable adsorption of H* on (a)

Mo site and (b) Mn site.

Fig. S12 Theoretical structural models of P doped Mo₂C with the most stable adsorption of H* on (a)

Mo site and (b) P site.

References

- 1 J. Kibsgaard and T. F. Jaramillo, *Angew. Chemie Int. Ed.*, 2014, **53**, 14433–14437.
- T. Wang, X. Liu, S. Wang, C. Huo, Y.-W. Li, J. Wang and H. Jiao, J. Phys. Chem. C, 2011, 115, 22360–22368.
- 3 Y. Zhou, J. Xu, C. Lian, L. Ge, L. Zhang, L. Li, Y. Li, M. Wang, H. Liu and Y. Li, *Inorg. Chem. Front.*, 2019, **6**, 2464–2471.
- H. Yan, Y. Xie, Y. Jiao, A. Wu, C. Tian, X. Zhang, L. Wang and H. Fu, *Adv. Mater.*, 2018, 30, 1704156–1704163.
- 5 D. H. Youn, S. Han, J. Y. Kim, J. Y. Kim, H. Park, S. H. Choi and J. S. Lee, ACS Nano, 2014,
 8, 5164–5173.
- 6 J. Dong, Q. Wu, C. Huang, W. Yao and Q. Xu, J. Mater. Chem. A, 2018, 6, 10028–10035.
- X. Fan, Y. Liu, Z. Peng, Z. Zhang, H. Zhou, X. Zhang, B. I. Yakobson, W. A. Goddard, X.
 Guo, R. H. Hauge and J. M. Tour, *ACS Nano*, 2017, 11, 384–394.
- 8 H. Lin, N. Liu, Z. Shi, Y. Guo, Y. Tang and Q. Gao, Adv. Funct. Mater., 2016, 26, 5590–5598.
- 9 Q. Liang, H. Jin, Z. Wang, Y. Xiong, S. Yuan, X. Zeng, D. He and S. Mu, *Nano Energy*, 2019,
 57, 746–752.
- Z. Cheng, Q. Fu, Q. Han, Y. Xiao, Y. Liang, Y. Zhao and L. Qu, *Adv. Funct. Mater.*, 2018, 28, 1705967–1705974.
- Z. Kou, T. Wang, Y. Cai, C. Guan, Z. Pu, C. Zhu, Y. Hu, A. M. Elshahawy, J. Wang and S. Mu, Small Methods, 2018, 2, 1700396–1700402.
- 12 C. Wu and J. Li, ACS Appl. Mater. Interfaces, 2017, 9, 41314–41322.
- 13 Z. Shi, K. Nie, Z.-J. Shao, B. Gao, H. Lin, H. Zhang, B. Liu, Y. Wang, Y. Zhang, X. Sun, X.-M.

Cao, P. Hu, Q. Gao and Y. Tang, *Energy Environ. Sci.*, 2017, **10**, 1262–1271.

- Y.-Y. Chen, Y. Zhang, W.-J. Jiang, X. Zhang, Z. Dai, L.-J. Wan and J.-S. Hu, *ACS Nano*, 2016, 10, 8851–8860.
- 15 T. Guo, X. Zhang, T. Liu, Z. Wu and D. Wang, *Appl. Surf. Sci.*, 2020, **509**, 144879–144886.