A multifunctional ligand for defect passivation of perovskite film realizes air-stable perovskite solar cells with efficiencies exceeding 20%

Zhong-En Shi,^a Jian-Yu Long,^b Chia-Wei Li,^c Sheng-Yan Hsieh,^b Yu-Sheng Hsiao,^c Chih-Ping Chen,^{*b} Yuan-Hsiang Yu^{*a}

^a Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan

^b Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.

^c Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Road, Da-an District, Taipei, 10607, Taiwan, ROC

*Corresponding authors.

E-mail addresses: 084916@mail.fju.edu.tw (Y.-H. Yu); cpchen@mail.mcut.edu.tw (C.P. Chen)

Experimental

Characterization

X-ray photoelectron spectroscopy (XPS) was performed using a ULVAC-PHI PHI 5000 Versaprobe II spectrometer and a monochromatic Al K α source. Scanning electron microscopy (SEM) images were recorded using a JSM-7000F microscope. Energy dispersive spectrometry (EDS) was used to determine the presence of elements. Crystallinity information was obtained using a Panalytical Empyrean X-ray diffractometer and CuK α radiation (λ = 0.1542 nm). Absorption spectra were recorded using a JASCO V-650 spectrometer. TRPL spectra were recorded using a time-correlated single photon counting spectrometer (WELLS-001 FX, DongWoo Optron); the pulse laser had a wavelength of 440 nm and an average power of 1 mW; it was operated with a duration of excitation of 2 µs. PL spectra were recorded using a FluroMax-4 HORIBA spectrometer with an excitation wavelength of 550 nm. Device performance data were measured inside a glove box. The current–voltage (I-V) properties of the devices were measured using a computer-controlled Keithley 2400 source measurement unit (SMU) and a Dyesol simulator (AAA Class Solar Simulators) under AM 1.5 illumination (1000 W/m²); the illumination intensity was calibrated using a standard Si reference cell and a KG-5 filter. EQE spectra were recorded by using an Enlitech QE-R spectral response measurement system to calibrate the current densities of the devices. Electrochemical impedance spectroscopy (EIS) was performed using an electrochemical workstation (IM6, Zahner) over the frequency range from 1 MHz to 1 Hz, with an amplitude of 20 mV, under dark conditions; the EIS curves were fitted with Z-view software based on the electronic circuit model.

Materials

Dimethyl sulfoxide (DMSO, Sigma–Aldrich), N,N-dimethylformamide (DMF, Arcos Organics), lead iodide (Alfa Aesar), methylammonium iodide (Sigma–Aldrich), 6,6²-dithiodinicotinic acid (TCI), nickel(II) acetylacetonate, EtOH (ECHO), bathocuproine (BCP, Aldrich), PC₆₁BM (Nano-C), and urea (J. T. Baker) were used as received

Fabrication of PSCs

Indium tin oxide (ITO) substrates were pre-cleaned in an ultrasonic bath, sequentially with abstergent aqueous solution, deionized water, acetone, and isopropyl alcohol, for 20 min each, then dried under a stream of N₂. To manufacture inverted perovskite solar cells having the architecture ITO/NiO_x/perovskite/PCBM/BCP/Ag, NiO_x films were prepared by spin-coating (5000 rpm, 30 s) a solution containing the NiO_x precursor onto plasmatreated ITO and then baking first at 250 °C for 30 min and then at 300 °C for 6 min. The NiO_x precursor solution was prepared by dissolving nickel acetylacetonate (55 mg) in EtOH (2.5 mL) containing 1% HCl as a stabilizer. The ITO/NiO_x substrates were transferred to an Ar-filled glove box for preparation of the perovskite films. A 1.4 M solution of the perovskite precursor was prepared by dissolving Pbl₂ and MAI at a molar ratio of 1:1 in a mixture of DMF and DMSO (4:1, v/v). To obtain the additive-included perovskite films, an additive (urea and/or dtdn) was added to the perovskite precursor solution. The urea-incorporated perovskites were prepared by directly adding 1% urea solution into the perovskite precursor. To obtain the dtdn-incorporated perovskites, the perovskite precursor was first prepared (with or without urea) and then a 1, 3, or 5 vol % solution of dtdn (0.05 M in DMF) was added into the precursor solution. The normal perovskite precursor, the precursor with urea, or the precursor with dtdn was spin-coated onto the substrate in a two-step manner: first at 2000 rpm for 10 s and then at 4000 rpm for 22 s. During the second step, toluene (0.3 mL) was added dropwise onto the spinning substrate; the system was then annealed at 100 °C for 10 min. A solution of PC₆₁BM in chlorobenzene (20 mg/mL) was spin-coated (2000 rpm, 30 s) onto the perovskite layer. A solution of BCP in isopropyl alcohol was spincoated (6000 rpm, 10 s) onto the PC₆₁BM layer. Finally, the devices were completed by evaporating Ag (100 nm) in a vacuum chamber; the active area of this electrode was fixed at 10 mm².

Figure S1. NMR spectra of MAI, MAI/dtdn, dtdn, and MAI/urea.

Figure S2. XPS spectra displaying the (a) Full-scale regions of perovskite films prepared with dtdn or urea and (b) S 2p regions of perovskite films prepared with dtdn.

Figure S3. Statistical analysis in grain size of SEM images of perovskite with and w/o additives

Figure S4. Cross-sectional SEM images of the (a) pristine perovskite film and (b–d) perovskite layers prepared with (b) 3% dtdn, (c) urea, and (d) urea/dtdn. (The scale bars are 100 nm).

Figure S5. (a, b) Cross-sectional SEM images and sulfur element mapping of perovskite films prepared with (a) dtdn and (b) urea/dtdn. (c) Top-view SEM images and sulfur element mapping of the perovskite film prepared with urea/dtdn.

Figure S6. *J*–*V* characteristic of PSCs incorporating perovskite films prepared with dtdn at various concentrations.

Figure S7. *J-V* curves and parameters obtained in forward and reverse scans of the pristine and optimal devices.

Device configuration	Pristine Modified Ambient Stability		Ref.		
Device configuration	PCE (%)	PCE (%)			
ITO/NiOx/MAPbI ₃ /PCBM/	16.76 20.64		94% stable after 720h	This	
BCP/Ag	16.76	20.64	(30 days) (40% RH)	work	
			72% stable after 60		
ITO/NiOx/Cs _{0.175} FA _{0.750} MA			days (in air,30%-40%		
_{0.075} Pb(I _{0.880} Br _{0.120}) ₃	17.37	19.01	RH) and 36% stable	1	
/PCBM/ZnO/Ag			after 104 days (air,	1	
			50%-60% RH)		
ITO/PTAA/FA _{0.8} MA _{0.2} Pb(I _{0.}	10 0	21 E	82.8% stable after 1700	2	
₈ Br _{0.2}) ₃ /PCBM/ZnO/Ag	10.5	21.5	h (40% RH)	-	
ITO/NiOx/Perovskite/	10 (2) 22 1		93% stable after 6000 h	3	
PCBM+C ₆₀ /BCP/Cr/Au	10.02	22.1	(40% RH)	Ĵ	
FTO/NiOx/MAPbl ₃ /PCBM/	10 50	20.42	86% stable after 30	4	
BCP/Ag	18.52	20.43	days (30% RH)		
FTO/NiOx/Perovskite/	12.0	10.00	80% stable after 1000 h	5	
PCBM/Rhodamine101/Ag	13.0	19.06	(30%-40% RH)	5	
ITO/NiOx/FA _{0.85} MA _{0.15} PbI _{2.}	10.00	20.41	90% stable after 60	6	
₅₅ Br _{0.45} /Nb ₂ O ₅ /Ag	18.28	20.41	days (55±10% RH)		
ITO/HTM/(exMMT/	10.05	17.20	Almost zero loss after	7	
MAPbI ₃)/PCBM/PEI/Ag	10.05	17.29	4680 h (ambient)	,	
ITO/PTAA/BDAI/Perovskit			87% stable after 850 h	8	
e/PCBM/BCP/Ag	20.09	22.31	(20% RH)	, , , , , , , , , , , , , , , , , , ,	

Table S1. Ambient stabilities of recently reported inverted PSCs.

Table S2. FWHMs and intensities of the XRD spectral signals at a value of 2ϑ of 14° corresponding to the (110) plane.

sample	FWHM (degree)	Intensity (a.u.)	
w/o	0.493	3028	
1% dtdn	0.476	4319	
3% dtdn	0.473	4681	
5% dtdn	0.489	3531	
with urea	0.463	7090	
with urea/dtdn	0.446	7966	

Table S3. Fitting parameters for the bi-exponential decay function of the TRPL spectral data of perovskite films prepared with various additives.

sample	$\tau_1(A_1)$	$\tau_2(A_2)$	$\tau_{\rm average}$
w/o	5.18 ns (27.1%)	46.25 ns (72.9%)	35.138 ns
With dtdn	4.76 ns (26.4%)	47.10 ns (73.6%)	35.925 ns
With urea	14.31 ns (21.4%)	51.73 ns (78.6%)	43.733 ns
With urea/dtdn	20.23 ns (27.3%)	60.81ns (72.7%)	49.741 ns

 Table S4. Fitted EIS parameters of PSCs incorporating perovskite films prepared with various additives.

Device (additives)	$\mathrm{R}_{s}\left(\Omega ight)$	$R_{rec}(\Omega)$	CPE(F)
w/o	17.15	2229	1.131•10-8
with dtdn	6.24	4448	1.074•10 ⁻⁸
with urea	8.44	4672	1.026•10 ⁻⁸
with urea/dtdn	6.97	5916	7.832•10-9

Table S5. Parameters of J–V performance of urea-derived PSCs incorporating perovskite films prepared withdtdn at various concentrations.

Sample (additives)	J _{SC} (mA/cm ²)	$V_{oc}(V)$	FF (%)	Efficiency (%)
with urea/1% dtdn	21.11	1.08	80.7	18.37
with urea/ 5% dtdn	20.83	1.08	78.6	17.66
with urea/ 7% dtdn	20.22	1.06	77.4	16.56

References:

- 1. M.-J. Choi, Y.-S. Lee, I. H. Cho, S. S. Kim, D.-H. Kim, S.-N. Kwon and S.-I. Na, *Nano Energy*, 2020, **71**, 104639.
- 2. D. Koo, Y. Cho, U. Kim, G. Jeong, J. Lee, J. Seo, C. Yang and H. Park, *Advanced Energy Materials*, 2020, **10**, 2001920.
- Q. Cao, Y. Li, H. Zhang, J. Yang, J. Han, T. Xu, S. Wang, Z. Wang, B. Gao, J. Zhao, X. Li, X. Ma, M. Zakeeruddin Shaik, E. I. Sha Wei, X. Li and M. Grätzel, *Sci Adv*, 2021, 7, eabg0633.
- 4. T. Wu, Y. Wang, X. Li, Y. Wu, X. Meng, D. Cui, X. Yang and L. Han, *Advanced Energy Materials*, 2019, **9**, 1803766.
- 5. R. Garai, M. A. Afroz, R. K. Gupta and P. K. Iyer, *Adv Sustain Syst*, 2020, **4**, 2000078.
- 6. J. Jiang, X. Lang, Q. Zeng, M. B. Faheem, S. Rong, H. Zhao and Y. Li, *Journal of Materials Chemistry A*, 2021, **9**, 13220-13230.
- 7. H.-H. Huang, Y.-C. Shih, L. Wang and K.-F. Lin, *Energ Environ Sci*, 2019, **12**, 1265-1273.
- S. Wu, J. Zhang, Z. Li, D. Liu, M. Qin, S. H. Cheung, X. Lu, D. Lei, S. K. So, Z. Zhu and A. K. Y. Jen, *Joule*, 2020, 4, 1248-1262.