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Experimental Section

1. Materials: All chemical reagents were purchased from commercial suppliers and no further 

purification was required before use. The materials used in this study were AB (NH3BH3, 97%, 

Aladdin), cobalt nitrate hexahydrate (Co(NO3)2·6H2O, Shanghai Macklin Biochemical Co., Ltd., 

AR, 99%), Copper nitrate hydrate (Cu(NO3)2·5H2O, AR, 99%, Shanghai Macklin Biochemical), 

p-Phthalic acid (PTA) (99%, AR, Shanghai Macklin Biochemical). Anhydrous methanol and 

ethanol were purchased from Tianjin Concord Co., Ltd. 

2.Characterization. The powder X-ray diffraction (XRD) analysis is carried out using a Rigaku 

TTR3 X-ray powder diffractometer with Cu Kα radiation (λ=1.5406 Å). The surface morphology 

of the catalyst is studied using a Merlin Compact scanning electron microscope (SEM). 

Transmission electron microscope (TEM) and high-resolution transmission electron microscope 

(HRTEM) images are obtained on a FEI Tecnai G2 F20 high-resolution transmission electron 

microscope operating at 200 kV. Thermal gravimetric analysis (TGA) is carried out on the STA 

409 PC/PG (NETZSCH Germany) at 800 ℃ with a heating rate of 10 ℃ min-1. The samples of 

CoCu-MOF and CoO@CoCu-C are studied using a Varian 720 inductively coupled plasma-

optical emission spectrometers (ICP-OES). X-ray photoelectron spectroscopy (XPS) 

measurement is performed with PHI 5000 Versa Probe. 

3.The Density functional theory (DFT) simulations calculation method. The present first 

principle DFT calculations are performed with the projector augmented wave (PAW) method. S1, 

S2 The exchange-functional is treated using the generalized gradient approximation (GGA) of 

Perdew-Burke-Ernzerhof (PBE) S3 functional. The cut-off energy of the plane-wave basis is set at 

450 eV for optimize calculations of atoms and cell optimization. The vacuum spacing in a 

direction perpendicular to the plane of the catalyst is 15 Å. The Brillouin zone integration is 

performed using 3×3×1 Monkhorst-Pack k-point sampling for structure. The self-consistent 

calculations apply a convergence energy threshold of 10-6 eV. The equilibrium lattice constants 

are optimized with maximum stress on each atom within 0.05 eV/Å. The Hubbard U (DFT+U) 

corrections for 3d transition metal by setting according to the literature.

Finally, the free energies are obtained by G=Etotal+EZPE-TS, where Etotal, EZPE, and TS is the 

ground-state energy, zero-point energies, and entropy terms, respectively.
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Supplementary Figures

Fig. S1. The XRD of Co-MOF, CoCu-MOF and Cu-MOF.
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Fig. S2. (a-c) SEM images of Co-MOF, (d-f) and SEM images of CoCu-MOF
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Fig. S3. The total X-ray spectrum of CoCuO@CoCu-C.
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Fig. S4. Logarithmic plot of AB concentration and rate constant.
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Fig S5. TOF of CoCuO@CoCu-C in cyclic stability test.
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Fig S6. The XRD of CoCuO@CoCu-C before recycle and after 5th recycle.
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Fig. S7. Hydrogen generation catalyzed by (a) different concentration of NaOH, (b) 
corresponding TOF, (c) different rotate speed and (d) corresponding TOF of CoCuO@CoCu-C at 
298 K.
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Fig. S8. View of the magnetism of CoCuO@CoCu-C in the (a) dry environment and (b) water 
environment.
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Fig. S9. The TOF at different concentration of NH4
+.
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Fig S10. The optimized 3D models of H2O on the surface of Co, CoCu, Cu, and CoCuO-CoCuO. 

Co, Cu, B, N, O and H are represented as wathet, win red, blue, pink, red and white sphere, 

respectively.
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Fig S11. The optimized 3D models of H2O on the surface of Co, CoCu, Cu, and CoCuO-CoCuO. 

Co, Cu, B, N, O and H are represented as wathet, win red, blue, pink, red and white sphere, 

respectively.
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Supplementary Tables

Table S1. The ratios of Cu/Co for CoCu-MOF and CoO@CoCu-C tested by ICP-AES.

Raw material molar ratio (Cu:Co) ratio 

(Cu:Co)

1:1 1:1

RefCu:Co(mol%) 22.65:21.71 34.09:35.72

Samples CoCu-MOF CoO@CoCu-C
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Table S2. Catalytic activities and Ea values of Co-based catalysts used for the hydrolytic dehydrogenation of 

AB.

Catalyst Temp.(K) TOF (min−1) Ea (kJ/mol) Cyclic test Ref

CoO@CoCu-C 298 37.56 (mol hydrogen mol Co
−1) 27.6 75.8% /5 this work

CoCu/Ni 298 30.5 (mol hydrogen mol cat
−1) / / S4

CoP@HPC-500 303 27.7 (mol hydrogen mol Co
−1) 42.5 8 times S5

Cu6Fe0.8Co3.2@MIL-

101

298 23.2 (mol hydrogen mol cat
−1) 37.1 7 times S6

Co-Co3O4/CDs 298 17.93 (mol hydrogen mol Co
−1) / 50%/5 S7

Co0.9W0.1/RGO 298 16.4 (mol hydrogen mol cat
−1) 30.7 5 times S8

CoNPs/Mxene 298 12.5 (mol hydrogen mol cat
−1) / 6 times S9

Cu0.4Co0.6/BNNFs 298 8.42 (mol hydrogen mol cat
−1) 21.8 55%/5 S10

Co/NPCNW 298 7.29 (mol hydrogen mol Co
−1) 25.4 90%/10 S11

Co@N-C-700 298 5.6 (mol hydrogen mol cat
−1) 21.8 97%/10 S12

Co/Al2O3 298 4.98 (mol hydrogen mol Co
−1) / / S13
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