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Comparison between beam theories

Fig. S1 A double clamped beam subjected to midway shearing and end compressive load. (A) The force diagram of 
the beam. (B) A quarter of the beam and the denotations.

This section shows the kinematics of a beam structure under two principal deformation 
patterns: compressive buckling and shearing, using large deflection beam theory, and further 
comparing the results with conventional beam theories.

Assuming the membrane strain of the fixed-fixed beam in Fig. S1 is negligible compared 
to the bending strain (since the membrane stiffness of such thin-wall structure is much larger than 
the bending stiffness), i.e. the total arc length of the beam doesn’t change, the Euler-Bernoulli 
theory considering large rotation gives:

\* MERGEFORMAT (1) 

2

2

3
2 2

1

d y
dxEI

ds
dy

M

x

dEI

d




      





According to equilibrium, the internal moment at any point in the beam is given by

\* MERGEFORMAT (2)
2 4

VbM aN y x  
   
 


 


Combining eq. (1) and eq. (2), the curvation may be rewritten as 
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To consider the compressive buckling case, we consider the scenario where V=0, i.e. where beam 
only subjected to horizontal loads, thus 
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Integration yields:
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Considering the boundary condition at the inflection point where θ=θm and dθ/ds=0, C1 is 
obtained as 
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Substituting eq. (6) into eq. (5) yields
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And the equation can be transformed to 
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When θm=0, the solution degenerate to 
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which corresponds with Euler’s critical load. Otherwise, the load is derived as 
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Similarly, the horizontal contraction and transverse deflection of the clamped-clamped beam can 
be expressed in elliptical integral:
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From eq. (1) and eq. (3), relations between θ and s can be rewritten as 
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Separating variables and integrating yield
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whose constant of integration can be derived from the boundary condition at the encastred end, 
where y = 0 and θ=0. Eliminating θ by substituting dx=cotθ·dy into eq. (14), the profile of the post-
buckling beams under specific compressing load can be expressed as the integration of a 
transcendental function
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Applying the same principles, we can obtain for the “pure shearing” case where N=0 that 
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Detailed derivations of the above process can also be referred to in the literature1–3. Though 
original functions can not be found for the integrants in eq. (15) and eq. (16), their integrations are 
readily calculable using numerical software. And their comparisons with small deflection profile 
solution (Asin(k)+Ax and polynomial), quadratic trigonometric approximation (Asin2(kx))4,5, and 
finite-element (FE) results are shown in Fig. S2. While the quadratic trigonometric method gives 
results corresponding to the FE outcome, with a maximum error of ca. 10%, the small deflection 
results can be divergent. Meanwhile, the large deflection theory has a very small error of ca. 0.1%, 
verifying its accuracy. A more general closed-form solution of double clamped beams subjected 
to arbitrary loads can be referred to in the literature6, in which the conclusions obtained above still 
apply.



Fig. S2 The profile comparison and relative error of different beam theory. (A) and (C) 
show the normalized beam profile under compressive buckling and “pure shearing”, respectively. 
Maximum rotation θm=π/2 and 0.65 cases are included for both. (B) and (D) give the relative errors 
compared to the FE results as a function of θm.

Implementation Methods

While detailed fabrication techniques and material usage for fractal-inspired soft 
deployable (FISD) structures are beyond the scope of this work, one of the possible 
implementation schemes can be envisioned based on experience, literature7–10, and representative 
designs in Fig. 1. Using a high-resolution 3D printer (Objet260 Connex3, Stratasys, ±0.1 mm 
accuracy and 16-micron layer thickness) and Vero photopolymers (2-3 GPa elastic modulus, 25% 
maximum elongation) as matrix material, a thin-walled honeycomb prototype with 12 
representative volume elements (RVE, blue square in Fig. 1C) can be built as shown in Fig. S3. 
While the thickness of each thin-walled beam remains as 0.6 mm, the slits between them have a 
height of h = 0.2 mm to keep a clearance, and the height of central slits (Fig. S3B) of each RVE is 
given as h0 = 1.0 mm to install the actuation (shape-memory coil actuator9,11,12 denoted by red 
dotted line in Fig. S3B, while highly swellable hydrogels can also be an applicant7,13,14). Including 
the rigid clamps attached (5×5 mm2, blue regions in Fig. S3A) at both ends, the FISD honeycomb 
planar actuator has a total dimension of 246× 41.1×5 mm3. Necessary modifications in the 
fabrication and assembly processes may have an impact on the detailed configurations.



Fig. S3 The implementation scheme for the FISD structures using a high-resolution 3D printer 
and SMA. (A) shows the assumed prototype consisting of an FISD honeycomb (green) and rigid 
clamps attached at the ends (blue). (B) presents the configuration of the central slits with SMA 
coils (red dotted line) installed.
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