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S1: Modeling of Polymer network and Nanoparticles

The mesh size ax and Nseg follows:

ax ≃ bN ν
seg, (1)

where b is the length of the Kuhn segment and ν is the Flory exponent that depends on

the solvent quality. The polymer network is allowed to relax to the thermal equilibrium in

athermal solvent before simulation, so that ν = 0.588.

Once the number density n is given, the volume fraction of polymer φp can be calculated

by three prescribed parameters Nseg, ax and n. For example, in cubic topology, the volume

fraction is φp ≈ 3Nseg/na
3
x. The correlation length ξ is depended on the volume fraction of

polymer φp with

ξ ≃ bφ−ν/(3ν−1)
p , (2)
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so that the tube diameter ae can be estimated by ae ≈ 5ξ.

A parameter θ = ax/ae is utilized to describe the degree of entanglement. For θ > 1

(ax > at), the polymer network is entangled. For θ < 1 (ax < ae), the polymer network is

unentangled.

Harmonic bond is used to connect two polymer particles with the bond energy defined

by

Ebond = emax(
r

r0
− 1)2, (3)

in which r0 is the equilibrium distance between two monomers and is equal to the Khun

length b, which can be calculated by equation (1). emax stands for the maximum energy of

the bond. This bead-spring model has been widely used in DPD simulations of polymers

and gels.1–4

In DPD simulations, all the physical quantities are expressed in DPD units, therefore it

is necessary to establish the mapping from the real physical scale to the DPD scale. The

reference length is based on the mesh size of polymer network, Lref = ax. The mass of the

solvent particle is considered as the characteristic quantity, and kBT = 1.

As recommended by Groot and Warren,5 the conservative parameters are chosen to be

assij = appij = 75kBT
n

= 25, with the superscripts s and p representing for solvent and polymer

respectively. As polymers are immersed in athermal solvent, thus aspij = 25. The dissipative

coefficients are set as γc
ij = 4.5, γs

ij = 0 for both s-s, p-p and s-p interactions. Different from

the previous study,6 here we choose shearing dissipative coefficient to be zero because the

rotation of the solvent particles has minor effects on the diffusion of NPs. For simplification,

λij = 0 for the interaction between NPs and small (solvent and polymer) particles.

An exponential form weight function equation is used to represent NP-solvent and NP-

polymer interaction, in which the factor of weight function bij = −20. The NP performs as

a solid sphere and the solvent particle cannot penetrate the NP. Radial distribution function

(RDF)7 of solvent and NP, gsn(r), which is approximately a step function rapidly increasing

from 0 to 1, as shown in Fig. S1, is calculated to measure the effective radius of solid sphere,
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Figure S1: Radial distribution function gsn(r) when radius of solid part are 0.5, 0.6 and 0.7.
The effective radius is the peak location of gsn(r),0.57 0.68 and 0.78.

and the effective radius is the location of the peak of gsn(r).

Conservative force parameter aij is adjusted to obtain desired solid radius. Specifically,

as shown in Fig. S2(a), The effective radius Rnp is dependent linearly on the conservative

parameter aij, and the linear fitting curve is given by

aij = 56.81 + 130.3Rnp. (4)

The dissipative coefficients for both NP-solvent and NP-polymer interaction are chosen as

γc
ij=3.5,γs

ij=5.5 following Pan et al.8 To obtain proper hydrodynamic Stokes resistance ex-

erted on NP, rcut,D is used to yield diffusion coefficient of NP in pure solvent satisfying

Einstein-Stokes relation given by D0 = kT/6πηsRnp, in which ηs = 1.8368 is viscosity of

pure solvent, which is calculated from reverse Poiseuille flow following approach in Ref.9 To

reach the target diffusivity, cut-off radius of dissipative force rcut,D should satisfy a linear

relation varying with Rnp,

rcut,D = 0.4311 + 0.7134Rnp, (5)

which is plotted in the Fig. S2(b).
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Figure S2: (a)Conservative parameter aij and (b)cut-off radius of dissipative force rcut,D
versus radius of NP Rnp. Conservative parameter aij is adjusted to obtain desired effective
NP radius. Cut-off radius of dissipative force rcut,D is chosen to correct the hydrodynamic
force.
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S2: Trajectory of NP diffusion

Typical 3D trajectory of NP hopping are shown in Figure S3, which shows the long displace-

ment in a short time. The hopping length is equal to the mesh size ax. This phenomenon

can be indicated by the multi-peaks in DPDF.
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Figure S3: Typical 3D trajectories for NP hopping.

S3: Potential Barrier during hopping process

In order to calculate potential barrier during hopping process, a large number of ensemble

averaging and fitting are conducted in the present study. The interval (0.0 < Xl < 0.5) is

divided into several bins with width of δr. Then ρ(Xl)F (Xl) and ρ(Xl) for each bins "i" can

be obtained directly,

ρ(Xli)Fhop(Xli) =
1

Nhop

Ni∑
j=1

Fj(Xlij | Xli < Xlij/ax < Xli + δr), tj ∈ Thop,

ρ(Xli) =
Ni

Nhop

where j denote the timestep in bin i.

As shown in Figure S4(a)(b), ρ(Xl) and ρ(Xl)Fhop(Xl) is plotted against Xl/ax. It

should mention that, when Xl is close to one, the samples in those pieces might be very

small, which results in a large fluctuation in ρ(Xl)Fhop(Xl). To overcome this difficulty,
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Figure S4: (a) ρ(Xl) and (b)ρ(Xl)Fhop(Xl) is plotted against the Xl/ax. (c) Fhop(Xl) is
calculated by the fitting function of ρ(Xl)Fhop(Xl) divided by ρ(Xl). (d) Uhop(Xl) is the
associated potential energy.

ρ(Xl) and Fhop(Xl) are fitted by proper functions. The ρ(Xl) can be satisfactorily fitted

with an exponential function Aexp(−k1X
α
l ) (A, k1, and α are coefficients). Considering the

function form used for fitting and the weight of the loss function might have a certain impact

on the final result, the fitting of ρ(Xl)Fhop(Xl) needs to follow the following principles: (a)

as Fhop(Xl) must be bounded, the decay speed of ρ(Xl)Fhop(r) (Bexp(−k2X
β
l ), B, k2, and β

are coefficients) should be greater than ρ(Xl), that is β > α; (b) since ρ(Xl)Fhop(Xl) might

fluctuate profoundly when Xl is close to 1, the weight function of the loss function needs to

be a decreasing function to eliminate the influence of fluctuations on the fitting.
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