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Supplementary Videos: Note that all simulation ran with random initial positions up to time t = 4000 (200,000 timesteps).

File Description Simulation Parameters

SI_Video1.mp4 Individual phenotype obtained from simulation of self-propelled particle model with pro-
liferation disabled. α = 0.07, P = 0.021

SI_Video2.mp4 Branching phenotype obtained from simulation of self-propelled particle model with pro-
liferation disabled. α = 0.09, P = 0.011

SI_Video3.mp4 Branching with clusters phenotype obtained from simulation of self-propelled particle
model with proliferation disabled. α = 0.25, P = 0.017

SI_Video4.mp4 Clustered phenotype obtained from simulation of self-propelled particle model with pro-
liferation disabled. α = 0.23, P = 0.009

SI_Video5.mp4 Branching phenotype obtained from simulation of self-propelled particle model with pro-
liferation enabled. α = 0.09, P = 0.009

SI_Video6.mp4 Branching with clusters phenotype obtained from simulation of self-propelled particle
model with proliferation enabled. α = 0.19, P = 0.013

SI_Video7.mp4 Clustered phenotype obtained from simulation of self-propelled particle model with pro-
liferation enabled. α = 0.23, P = 0.007
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Note S1: Computational of Persistence Diagrams and Wasserstein Distance790

Topological barcodes visualize the robustness (via persistent homology) of topological features such as edges and loops across varying791

length scales (i.e. filtration values) ε.59 For example, consider a set of 7 points at varying filtration, illustrated by gray disks with radius792

ε1 centered at each point (Fig. S1a). As the radius increases to ε2, certain gray disks overlap, indicating that the corresponding points793

should be connected by 7 edges (blue lines, dimension 0 homology) at this cutoff distance (Fig. S1b). Moreover, these connected794

edges form 1 closed loop around an empty region (orange circle, dimension 1 homology). A further increase in radius to ε3 maintains795

connectivity of the 7 edges, but collapses the closed loop (Fig. S1c).796

Fig. S1 Computation of persistence homology. (a,b,c) Visualization of connectivity between points at varying values of spatial parameter ε. Edges
are colored in blue (dimension 0 homology), and loops are colored in orange (dimension 1 homology) (d) Corresponding topological barcode. (e)
Persistence diagram showing loops only for simplicity.

The corresponding topological barcode uses horizontal bars to visualize the persistence of features that appear or disappear at797

varying ε intervals (Figure S1d). Essentially, the barcode presents Betti intervals whose start corresponds to the ε-value for the798

appearance of a topological feature (i.e. the lowest ε-value at which the feature appears (“start”), and whose end corresponds to the799

ε-value for the disappearance of the topological feature (i.e. the highest ε-value at which the feature is present,). For example, at ε1,800

there are seven distinct blue bars corresponding to the number of discrete points, which are not connected at this length scale. At ε2,801

there is only one blue bar, since all points have linked together forming a connected component, and there is the appearance of one802

closed loop, indicated by an orange bar. At ε3, there remains only one blue bar and no orange bar, since the closed loop has collapsed.803

The same information can also be organized in a persistence diagram (start ε values on x-axis and end ε values on y-axis), where the804

distance from the diagonal is indicative of the significance or importance of a topological feature (Fig. S1e). In particular, note that805

the closed loop is appreciably offset from the diagonal, signifying that it is a relatively stable topological structure for this particle806
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configuration. For simplicity, edges are not shown in the persistence diagram. 807

808

To compare two persistence diagrams X and Y , the notion of distance between these diagrams is defined using the Wasserstein metric 809

as follows. First, a bijection, s : X → Y , is defined by matching all off-diagonal points in X with off-diagonal points in Y . Points close 810

to the diagonal (corresponding to very short-lived and insignificant topological features) do not contribute to the distance between 811

persistence diagrams. In case the two diagrams contain an unequal number of points, we also permit points to be matched to their 812

projection on the diagonal, effectively ignoring them. Matching points across diagrams requires solution of an assignment problem, 813

which is easier if the number of points in both diagrams are identical60. Therefore, in practice, projections of off-diagonal points to the 814

diagonal are exchanged between persistence diagrams before matches are obtained (Fig. S2, a-c). The Wasserstein distance, W (X ,Y ) is 815

then defined as the infimum over all possible bijections, s: 816

Wq,p(X ,Y ) = inf
s:X→Y

(
∑
x∈X
‖x− s(x)‖q

p

) 1
q

(4)

where for p,q = 2 we minimize the sum of squared Euclidean distances. 817

Fig. S2 Computation of Wasserstein distance. (a) Projections of off-diagonal points to the diagonal are computed. Circles represent edges or
connected components and triangles represent loops. Point at (0,∞) representing 1 connected component for high values of spatial parameter ε is
not considered. (b) Projections on the diagonal are exchanged between persistence diagrams. (c) Points are matched to their closest neighbor in the
other diagram. Note that points can also be matched to their diagonal projection. Circles can only be matched to other circles and triangles can only
be matched to other triangles.
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Note S2: System Parameterization based on Peclet Number and Attraction / Polarity818

Fig. S3 Schematic for particle-particle interaction in the agent-based model. A particle j is at equilibrium with particle i. A polarization force P is
applied to pull particle j to distance rmax against adhesion force Fi j.

The system is parameterized using two nondimensional variables corresponding to particle self-propulsion and adhesion. First, the819

Peclet number is defined in terms of the self-propulsion speed P/η , the particle radius req, and the characteristic reorientation time τp.820

The particle radius is given by the equilibrium separation distance where the interaction potential is a minimum, that is:821

|Fi j|=−
∣∣∣dU

dr

∣∣∣= α

∣∣∣ 1
4LR

e−r/LA − 1
LA

e−r/LA

∣∣∣ 0≤ r ≤ rmax (5)

|Fi j|= 0 =⇒ req =
LALR

LA−LR
ln
( LA

4LR

)
≈ 1 (6)

Thus,822

Pe =

PτP
η

req
≈ 50P (7)

where η = 1 and τP = 2500∆t = 50 is the characteristic time to repolarization. The Peclet number ranges between 0.4 and 1.3 for823

polarization values in our simulation.824

825

Second a non-dimensional adhesion (scaled by self-propulsion), A, is defined that compares the relative strengths of adhesion and826

self-propulsion. The energetic cost ∆U of breaking a particle-particle bond is determined by moving the particle by a distance ∆r from827

req with rmax, beyond which the interaction energy is 0. Thus,828

Ueq =U(req) =−α

(4LR

LA

) LR
LA−LR +

α

4

(4LR

LA

) LA
LA−LR ≈−0.897α (8)

U(rmax) =−αe−rmax/LA +
α

4
e−rmax/LR ≈−0.886α (9)

We note that at any given time, the self-propulsion force P is randomly oriented, thus we must average over all possible orientations θ .829

When the self-propulsion force of the jth particle is oriented away from the ith particle, the effective force acting against the particle-830

particle bond is given by Pcos(θ) (i.e. −π/2 < θ < π/2). However, when the self-propulsive force of the jth particle is oriented towards831

the ith particle, the effective force is 0. (i.e. −π < θ <−π/2; π/2 < θ < π). Thus,832

A =
∆U

∆r
∫

π

−π
Pcos(θ)dθ

=
(U(rmax)−U(req))π

P(rmax− req)
≈ 0.011απ

P
(10)

A ranges between 0.05 and 2.1 for α and P values in our simulation.833
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Note S3: Runtime performance measurements for Wasserstein distance computation 834

We computed pairwise Wasserstein distances between 121 simulations corresponding to 11 polarization values (linearly spaced between 835

0.005 and 0.025) and 11 adhesion values (linearly spaced between 0.05 and 0.25). Computations corresponding to the two lowest 836

polarization values (P = 0.005,P = 0.007) were later discarded from the phase diagram since they appeared to be kinetically trapped. 837

Since the resulting distance matrix is symmetric, the Wasserstein distances were computed for the upper triangular part, including the 838

diagonal, consisting of 121×(121+1)/2 = 7381 entries. Parallel computation was performed on 10 CPUs (Intel Core i7-7800X, 3.5 GHz) 839

with the ith core responsible for computing entries in columns 12× (i−1)+1 to 12× (i). Therefore, core 1 computed entries in columns 840

1−12 (78 values), core 2 computed entries in columns 13−24 (222 values), and so on. Core 10 computed entries in columns 109−121 841

(1495 values). In general, the ith core was responsible for computing 144× i− 66 values, for values of i ranging from 1 to 9. Note 842

that the 10th core computed values in 13 columns, whereas all other cores computed values in 12 columns. While this is not the most 843

efficient allocation of work (in an optimal configuration, work would be divided equally among the processors), it is easy to implement 844

and produces results within a reasonable time frame (see Table S1). 845

Simulation Barcode Dimension # Cores Time (mins)
Without proliferation 0 10 11
Without proliferation 1 10 5

With proliferation 0 10 36
With proliferation 1 10 13

Table S1 Time taken to compute pairwise Wasserstein distances.
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Fig. S4 Non-proliferating particle model results in individual, branching, branching with clusters and clustered phenotypes with varying
adhesion and self-propulsion force. Representative snapshots at time intervals of 600 (every 30,000 timesteps, except for the last snapshot) of
individual phase with α = 0.07,P = 0.021 (a), branching phase with α = 0.09,P = 0.011 (b), branching with clusters phase with α = 0.25,P = 0.017 (c),
and clustered phase with α = 0.23,P = 0.009 (d), with all simulations starting with random initial positions. Particle with one or more neighbors are
plotted in black, with a “bond” drawn between any two cells within radial distance 1.0. Individual cells are shown in red. More individual cells are
observed when random polarization dominates over adhesion force. Furthermore, the presence of clusters at low adhesion is transitory and cells are
highly motile.
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Fig. S5 Comparison of local density (nearest neighbor count) and persistent loop diameter associated with distinct phases. In the top
row, data acquired from individual, branching, branching with clusters and clustered simulations performed 10 times each with random initialization and
parameters (α = 0.07,P= 0.021), (α = 0.09,P= 0.011), (α = 0.25,P= 0.017) and (α = 0.23,P= 0.009) respectively. In the bottom row, data acquired from
branching, branching with clusters and clustered simulations performed 10 times each with random initialization and parameters (α = 0.09,P = 0.009),
(α = 0.19,P = 0.013) and (α = 0.23,P = 0.007) respectively. (a) Comparison of nearest neighbor count for individual, branching, and clustered phases at
constant population size. (b) Comparison of characteristic loop diameter for individual, branching, and clustered phases at constant population size. (c)
Comparison of nearest neighbor counts for branching and clustered phases in proliferating populations. (d) Comparison of characteristic loop diameter
for individual, branching, and clustered phases in proliferating populations.
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Fig. S6 Phase transitions parameterized by dimensionless parameters for self-propulsion (Pe) and adhesion (A). (a) Local density (nearest
neighbor count) for a constant population size. (b) TDA classification of individual, branching, and clustered phases at constant population size.
(c) Local density (nearest neighbor count) for a proliferating population. (d) TDA classification of branching and clustered phases for a proliferating
population.
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Fig. S7 Pairwise Wasserstein distances between all simulations without proliferation, as well as varying adhesion and self-propulsion force.
Hierarchical clustering groups simulations into individual, branching, branching with clusters, and clustered categories corresponding to distinct phases
along the diagonal. Note that branching with clusters phase exhibits similarity with both branching and clustered phases.
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Fig. S8 Self-propelled, proliferating particle model results in branching, branching with clusters and clustered phenotypes with varying
adhesion and self-propulsion force. Representative snapshots at time intervals of 600 (every 30,000 timesteps, except for the last snapshot) of
branching phase with α = 0.09,P = 0.009 (a), branching with clusters phase with α = 0.19,P = 0.013 (b), and clustered phase with α = 0.23,P = 0.007
(c), with all simulations starting with random initial positions. Particle with one or more neighbors are plotted in black, with a “bond” drawn between any
two cells within radial distance 1.0. Particles with four or more neighbors that cannot proliferate due to contact inhibition of proliferation are shown in
green.
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Fig. S9 Pairwise Wasserstein distances between all simulations with proliferation, as well as varying adhesion and self-propulsion force.
Hierarchical clustering groups branching, branching with clusters, and clustered phases along the diagonal. Note that branching with clusters phase
exhibits similarity with both branching and clustered phases.
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Fig. S10 Hierarchical clustering of pairwise Wasserstein distances between persistence diagrams of experimentally measured cell nuclei
positions identifies distinct clustered and branching phases. Dendrogram obtained by running complete-linkage hierarchical clustering algorithm
using Wasserstein distance groups experimental conditions based on assay media (a) and gefitinib treatment (b), then biochemical treatment with
DMSO or OHT, as well as initial cell density.

12 | 1–18Journal Name, [year], [vol.],



Fig. S11 Experiments compared to simulation results using Wasserstein distance. Pairwise Wasserstein distances are calculated between cell
nuclei positions obtained from experiments (scaled to fit in [−10,10]× [−10,10] domain) and particle positions obtained from simulations. Experiments
are matched to simulations by minimum distance. Experiments with Wasserstein distances exceeding 1.5 are not shown.
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Fig. S12 Pairwise Wasserstein distances over time. (a) Pairwise Wasserstein distances comparing individual, branching, and clustered phases
over time at fixed population size. (b) Comparison of branching, and clustered phases in a proliferating population. Dashed red line indicates threshold
value above which the pair of simulations can be distinguished. Mean values computed using 10 random initializations for each simulation.
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Fig. S13 Number of neighbors over time. (a) Local order parameter over time for individual, branching, and clustered phases at fixed population
size. (b) Local order parameter over time for branching and clustered phases in a proliferating population. Dashed lines indicate threshold values to
distinguish between individual, branching and clustered phases. Mean (solid bold line) and standard deviation (shaded region) computed using 10
random initializations for each simulation.
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Fig. S14 Phase diagram classified using dimension 0 homology (connected components). (a) Simulations without proliferation are classified into
4 distinct phases, individual, branching, branching with clusters, and clustered. (b) Simulations with proliferation are classified into 3 distinct phases,
branching, branching with clusters, and clustered. The dashed lines represent phase boundaries determined manually by inspecting particle positions.
Classification results are biased by number of particles.
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Fig. S15 Pairwise Wasserstein distances computed using dimension 0 homology (connected components) between all simulations without
proliferation, as well as varying adhesion and self-propulsion force. Hierarchical clustering groups individual, branching, branching with clusters,
and clustered corresponding to distinct phases along the diagonal. Note that branching with clusters phase exhibits similarity with both the branching
and clustered phases.
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Fig. S16 Pairwise Wasserstein distances computed using dimension 0 homology (connected components) between all simulations with
proliferation, as well as varying adhesion and self-propulsion force. Hierarchical clustering groups branching, branching with clusters, and
clustered corresponding to distinct phases along the diagonal.
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