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1 Mean Squared Displacement for an Active Brownian Par-

ticle (ABP)

In two dimensions, a single active particle trajectory at time t is described by the its position ~r(t) =
(x(t), y(t)) and self-propelled velocity v0n̂(t) = v0 (cos θ(t), sin θ(t)), where θ(t) is the self-propelled
velocity angle with the x-axis and v0 is the self-propelled speed. We describe the dynamics of an
isolated active Brownian by a set of overdamped Langevin equations1–3

~̇r(t) = v0 n̂(t) +
√

2DT ~χ(t) , (1)

θ̇(t) =
√

2DRξ(t), (2)

where the dot above the dynamic variables denotes temporal derivative and DT , DR are the thermal
and rotational diffusion constants, respectively. The terms ξ(t) and ~χ(t) are white Gaussian noises with
zero-mean, second moment 〈ξ(t1)ξ(t2)〉 = δ(t1 − t2) and 〈~χ(t1).~χ(t2)〉 = 2δ(t1 − t2). Setting the initial
time t0 = 0, we integrate the Langevin equations Eqs. (1), (2),

~r(t) = ~r0 + v0

∫ t

0

n̂(t)dt+
√

2DT

∫ t

0

~χ(t)dt , (3)

θ(t) = θ0 +
√

2DR

∫ t

0

ξ(t)dt (4)

we recognize a Wiener process in the second term of Eq. (4). The average over different realizations in
Eqs. (3), (4) results in,

〈~r(t)〉 = ~r0 + v0

∫ t

0

〈n̂(t)〉 dt , (5)

〈θ(t)〉 = θ0. (6)

The computation of second moments involves noise correlations,〈
~r(t)2

〉
= r2

0 + 2v0~r0.

∫ t

0

〈n̂(t)〉 dt

+ v2
0

∫ t

0

∫ t

0

〈n̂(t1).n̂(t2)〉 dt1dt2

+ 2DT

∫ t

0

∫ t

0

〈~χ(t1).~χ(t2)〉 dt1dt2 , (7)

〈
θ(t)2

〉
= θ2

0 + 2DR

∫ t

0

∫ t

0

〈ξ(t1)ξ(t2)〉 dt1dt2, (8)
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where we used 〈n̂(t).~χ(t)〉 = 〈n̂(t)〉 . 〈~χ(t)〉 and 〈~r0.~χ(t)〉 = ~r0. 〈~χ(t)〉, thus

σ2 =
〈
θ(t)2

〉
− 〈θ(t)〉2 = 2DRt. (9)

The mean-square displacement msd(t) = 〈(~r(t)− ~r0)2〉 is defined by〈
(~r(t)− ~r0)2

〉
=

〈
~r(t)2

〉
+ r2

0 − 2~r0. 〈~r(t)〉 , (10)〈
(~r(t)− ~r0)2

〉
= v2

0

∫ t

0

∫ t

0

〈n̂(t1).n̂(t2)〉 dt1dt2

+ 2DT

∫ t

0

∫ t

0

〈~χ(t1).~χ(t2)〉 dt1dt2 , (11)

〈
(~r(t)− ~r0)2

〉
= v2

0

∫ t

0

∫ t

0

〈n̂(t1).n̂(t2)〉 dt1dt2

+ 4DT t,

where the term v2
0 〈n̂(t1).n̂(t2)〉 is called of self-propelled velocity autocorrelation function. Since the

angle θ(t) is a Wiener process, its distribution is a Gaussian with mean θ0 and variance σ2 = 2DRt, thus

ρ(θ(t)) =
1√

2πσ2
exp

(
−(θ(t)− θ0)2

2σ2

)
. (12)

The mean value of self-propelled velocity direction 〈n̂(t)〉may be calculate using the angular distribution,

〈n̂(t)〉 =

∫ ∞
−∞

ρ(θ(t))(cos θ(t)̂i+ sin θ(t)ĵ)dθ , (13)

= î

∫ ∞
−∞

cos θ(t)ρ(θ(t))dθ ,

the integral in the second term of Eq. (13) is zero since the sine function is odd and the Gaussian
distribution even. We can rewrite the Eq (14) as

〈n̂(t)〉 =

∫ ∞
−∞

{
eiθ + e−iθ

2

}
ρ(θ(t))dθî , (14)

〈n̂(t)〉 = e−DRt cos θ0î. (15)

We may then calculate the self-propelled velocity autocorrelation function as follows,

〈n̂(t1).n̂(t2)〉 = 〈cos θ1 cos θ2 + sin θ1 sin θ2〉 ,
= 〈cos(θ1 − θ2)〉 . (16)

To calculate the Eq. (16) it is necessary to know the distribution of θ̄(t̄) ≡ θ1 − θ2, but as previously,
this is a Wiener process. From Eqs. (4) and (9) we have〈

θ̄(t̄)
〉

= 0 , (17)〈
θ̄(t̄)2

〉
= 2DRt̄, (18)

where t̄ ≡ |t1− t2|, thus,

ρ(θ̄(t̄)) =
1√

2πσ2
θ̄

exp

(
− θ̄(t̄)

2

2σ2
θ̄

)
, (19)
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where σ2
θ̄

= 2DRt̄. Using the same procedure of Eq. (14), but with cos θ̄ and ρ(θ̄(t̄)), we obtain

〈n̂(t1).n̂(t2)〉 =

∫ ∞
−∞

{
eiθ̄ + e−iθ̄

2

}
ρ(θ̄(t))dθ̄ , (20)

〈n̂(t1).n̂(t2)〉 = e−DR|t1−t2|. (21)

To write the msd(t) we use Eqs. (11) and (21),

v2
0

∫ t

0

∫ t

0

e−DR|t1−t2|dt1dt2 = v2
0

∫ t

0

∫ t1

0

eDR(t2−t1)dt2dt1

+ v2
0

∫ t

0

∫ t2

0

eDR(t1−t2)dt1dt2,

=
v2

0

DR

∫ t

0

(1− e−DRt1)dt1

+
v2

0

DR

∫ t

0

(1− e−DRt2)dt2,

msd(t) = 4DT t+
2v2

0

DR

[
t+

1

DR

(e−DRt − 1)

]
, (22)

msd(t) = 4DT t+ 2l2p

[
t

τR
+ (e−t/τR − 1)

]
, (23)

where lp = v0τR is the persistence length and τR = 1/DR is called persistence time. At short times,
t � 4DT/v

2
0, the motion is diffusive with the typical Brownian short-time thermal constant diffusion,

msd(t) = 4DT t. At intermediate times, 4DT/v
2
0 < t < 1/DR, the motion is ballistic, and we find

msd(t) = 4DT t+v
2
0t

2. At long times t� 1/DR, the motion is diffusive com msd(t) = 4DT t+2v2
0t/DR =

4Dt , where D = DT + v2
0/2DR is the diffusion coefficient constant.

2 Mean Square Displacement for a System of Active Brown-

ian Particles τ →∞
For a system with N interacting active Brownian particles, the center of mass position dynamics ~RCM(t)
follows equation

~̇RCM(t) =
v0

N

N∑
i

n̂i(t) +
µ

N

N∑
i

∑
i∼j

∇U(~ri(t)) +

√
2DR

N

N∑
i

~χi(t), (24)

where the self orientation of each particle is given by

θ̇i(t) =
√

2DRξi(t), (25)

being ξi(t) and ~χi(t) Gaussian white noises with zero-mean with second moment 〈ξi(t1)ξj(t2)〉 = δijδ(t1−
t2) and 〈~χi(t1).~χj(t2)〉 = 4DT δijδ(t1 − t2) independently for each particle at each time-step. Since all
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forces derived from the potential are internal, Eq. (24) reduces to

~̇RCM(t) =
v0

N

N∑
i

n̂i(t) +

√
2DR

N

N∑
i

~χi(t), (26)

Therefore, using the same procedure of the previous section, definingMSD(t) =
〈

(~RCM(t)− ~RCM(0))2
〉

,

we find,

MSD(t) =
1

N2

N∑
i

N∑
j

{ v2
0

∫ t

0

∫ t

0

〈n̂i(t1).n̂j(t2)〉 dt1dt2

+ 2DT

∫ t

0

∫ t

0

〈~χi(t1).~χj(t2)〉 dt1dt2 }, (27)

where

〈n̂i(t)〉 = e−DRt cos θ0î , (28)

〈n̂i(t1).n̂j(t2)〉 = δije
−DR|t1−t2|. (29)

Using Eq. (29) in Eq. (27), we get

MSD(t) =
1

N
{ v2

0

∫ t

0

∫ t

0

e−DR|t1−t2|dt1dt2

+ 4DT

∫ t

0

∫ t

0

δ(t1 − t2)dt1dt2 }, (30)

MSD(t) =
msd(t)

N
, (31)

MSD(t) =
4DT

N
t+

2v2
0

DRN

[
t+

1

DR

(e−DRt − 1)

]
, (32)

MSD(t) =
4DT

N
t+ 2L2

p

[
t

τR
+ (e−DRt − 1)

]
, (33)

where Lp = v0τR/
√
N is the persistence length. We can analyze the center of mass velocity fluctuations

using Eq. (26),

~̇RCM(t) =
v0

N

N∑
i

n̂i(t) +

√
2DR

N

N∑
i

~χi(t),

~VCM(t) =
v0

N

N∑
i

n̂i(t) +

√
2DR

N

N∑
i

~χi(t), (34)

〈
~VCM(t)

〉
=

v0

N

N∑
i

〈n̂i(t)〉 = v0e
−DRt cos θ0î,〈

~VCM(t)
〉2

= v2
0e
−2DRt cos2 θ0

t�1−−→ 0. (35)
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The second moment of ~VCM(t) is

〈
~V 2
CM(t)

〉
=

v2
0

N2

N∑
i

N∑
j

〈n̂i(t).n̂j(t)〉 , (36)

where we use 〈n̂i(t).~χj(t)〉 = 〈n̂i(t)〉 . 〈~χj(t)〉 and 〈~χi(t).~χj(t)〉 = 〈~χi(t)〉 . 〈~χj(t)〉. Using the Eq. (29) in
Eq. (36) we get 〈

~V 2
CM(t)

〉
=
v2

0

N
. (37)

Substituting Eq. (37) in Eq. (32), we obtain

MSD(t) =
4DT

N
t+ 2

〈
~V 2
CM(t)τR

〉 [
t+ τR(e−t/τR − 1)

]
. (38)

3 Order parameter fluctuation

From Eq. (37) we obtain the stationary fluctuation of ~V 2
CM for a system of ABP’s,

δ~V 2
CM =

〈
~V 2
CM

〉
−
〈
~VCM

〉2

=
v2

0

N
, (39)

the definition of the translational order parameter is

ϕ(t) =
1

N

∣∣∣∣∣
N∑
i

~vi(t)

|~vi(t)|

∣∣∣∣∣ ,
since forces in the ring are internal, we may approach |vi| ∼ |v0 + δvi| and rewrite Eq. (39) in first order
approach as

ϕ(t) ∼ 1

Nv0

∣∣∣∣∣
N∑
i

~vi(t)

∣∣∣∣∣ , (40)

while for the CM velocity we have,

~V 2
CM(t) =

∣∣∣~VCM(t)
∣∣∣2 =

1

N2

∣∣∣∣∣
N∑
i

~vi(t)

∣∣∣∣∣
2

, (41)

comparing Eqs. (39), (40) and (41), we conclude that

δϕ(t)2 =
〈
ϕ(t)2

〉
− 〈ϕ(t)〉2 ∼ 1

N
, (42)

δϕ(t) =

√
〈ϕ(t)2〉 − 〈ϕ(t)〉2 ∼ 1√

N
. (43)
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4 Ratio between radius of gyration of a rod and a circumfer-

ence

The radius of gyration is defined as

Rxx(t) =
1

N

N∑
i

(xi(t)−Xcm(t))2, (44)

Ryy(t) =
1

N

N∑
i

(yi(t)− Ycm(t))2, (45)

Rg(t)
2 = Rxx(t) +Ryy(t). (46)

when the active ring is in circular format with radius R, its radius of gyration is

R2
g,cir = R2 =

(
Nr0

2π

)2

, (47)

r0 being the distance between the particles composing the ring. In the limit the ring becomes a rod we
can approach it by two parallel chains with N/2 particles (Fig. 1) and we may calculate Rxx and Ryy as
follows

Rxx =
4

N

N−1
4∑

k=1

(kr0)2,

Rxx =
r2

0

48N
(N − 1)(N + 1)(N + 3),

Rxx =
r2

0

48

(
N2 + 3N − 3

N
− 1

)
. (48)

Ryy =
1

N

N∑
k=1

(r0

2

)2

,

Ryy =
r2

0

4
. (49)

Thus, we got R2
g,rod

R2
g,rod = Rxx +Ryy,

R2
g,rod =

r2
0

48

(
N2 + 3N − 3

N
+ 11

)
, (50)

Through of Eq. (47) and Eq. (50) we got the ratio

Rg,rod

Rg,cir

=

√
4π2

48

(
1 +

3

N
+

11

N2
− 3

N3

)
. (51)

When N � 1

Rg,rod

Rg,cir

=
π

2
√

3
= 0.90689. (52)
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Figure 1 Configuration of the system in the limit of rod.

Another way to calculate the ratio between the radius of gyration of a rod and a circumference it is
to approach the two chains from Fig. 1 as a rectangle of width L and height h. The moment of inertia
with respect to center of mass is

Iz =

∫ h
2

−h
2

∫ L
2

−L
2

(x2 + y2)σdxdy,

Iz =
σ

12
(h3L+ L3h). (53)

The superficial density σ = M
hL

, h = 2r0 and L = Nr0/2, we got

Iz =
Mr2

0

48
(N2 + 16). (54)

The relationship between radius of gyrations and moment of inertia is

Iz = MR2
g, (55)

thus

R2
g,rod =

r2
0

48
(N2 + 16). (56)

From Eq. (56) we have the ratio

Rg,rod

Rg,cir

=

√
4π2

48

(
1 +

16

N2

)
. (57)

For N � 1

Rg,rod

Rg,cir

=
π

2
√

3
= 0.90689. (58)
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5 Movie Captions

• Movie 1: Active ring in RUN state. Time is in units of τ0. Frames are separated by 0.3τ0. Set
parameters: N = 20, B = 0, Fn = 1. → Fig 3a

• Movie 2: Active ring in ROT state. Time is in units of τ0. Frames are separated by 0.3τ0. Set
parameters: N = 20, B = 0, Fn = 1. → Fig 3b

• Movie 3: Active ring in PRW state. Time is in units of τ0. Frames are separated by 0.3τ0. Set
parameters: N = 20, B = 0, Fn = 1. → Fig 3c

• Movie 4: Active ring in RRM state. Time is in units of τ0. Frames are separated by 0.3τ0. Set
parameters: N = 20, B = 0, Fn = 1. → Fig 3d

• Movie 5: Active ring in RUN state. Time is in units of τ0. Frames are separated by 0.3τ0. Set
parameters: N = 100, B = 0, Fn = 100, Pe = 5, τ = 0.1. → Fig 12
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