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1 Mean Squared Displacement for an Active Brownian Par-
ticle (ABP)

In two dimensions, a single active particle trajectory at time ¢ is described by the its position 7(t) =
(x(t),y(t)) and self-propelled velocity von(t) = wvo (cosf(t),sinf(t)), where 0(t) is the self-propelled
velocity angle with the x-axis and vy is the self-propelled speed. We describe the dynamics of an
isolated active Brownian by a set of overdamped Langevin equations®™

7(t) = won(t)+2Dry(t) (1)
0(t) = /2Dgpé(t), (2)

where the dot above the dynamic variables denotes temporal derivative and Dy, Dy are the thermal
and rotational diffusion constants, respectively. The terms £(¢) and x(t) are white Gaussian noises with
zero-mean, second moment (£(¢1)£(t2)) = 0(t1 — t2) and (X(t1).X(t2)) = 20(t1 — t2). Setting the initial
time ¢, = 0, we integrate the Langevin equations Eqs. (1)), (2)),

) = o+ v / (1)t + \/2Dr / it (3)
6(1) — 6o +/2Dn /tf(t)dt (4)

we recognize a Wiener process in the second term of Eq. . The average over different realizations in

Egs. (3), () results in,

FB) = 7+ / (b)) dt | (5)
) = 6. (6)

The computation of second moments involves noise correlations,
t
(F(t)*) = 1§+ 2vT. / (A(t)) dt
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where we used (7 (t).X(t)) = (A(t)) . (X(¢)) and (70.X(t)) = 7o. (X(?)), thus
o? = (0(t)*) — (0(t))* = 2Dpgt. (9)
The mean-square displacement msd(t) = ((7(t) — 7)?) is defined by
((F(t) —70)*) = (it 2>+r§—zfo (F(1)) (10)
((F(t) — 7)) = vo/ / n(ty).n(ty)) diydts

+ 2DT/ / (X(t1).X(t2)) dt1dts , (11)
WW—m%::%// () Alts)) dbrdty

+ 4Dt

where the term v2 (n(t;).n(t2)) is called of self-propelled velocity autocorrelation function. Since the
angle (t) is a Wiener process, its distribution is a Gaussian with mean 6y and variance 02 = 2Dxt, thus

p(0(0) = e (LU0 12

The mean value of self-propelled velocity direction (2(t)) may be calculate using the angular distribution,

(n(t)) = /_OO p(0(t))(cos O(t)i + sinO(t)7)do (13)

~

_ /_ " cos0(8)p(0(1))d6

[e.9]

the integral in the second term of Eq. is zero since the sine function is odd and the Gaussian
distribution even. We can rewrite the Eq as

aoy = [ o, (14

o0

(a(t)) = e Prtcos by (15)
We may then calculate the self-propelled velocity autocorrelation function as follows,

(n(t1).n(t2)) = (cosBcosby + sinb;sinbsy) |
= (cos(fy — 0)) . (16)

To calculate the Eq. ( it is necessary to know the distribution of §(f) = 6; — 65, but as previously,
this is a Wiener process Frorn Eqgs. (4]) and @ we have

o0y = 0, (17)

(0(t)*) = 2Dgt, (18)
where t = [t1 — 2], thus,
() = —— ex —9(5)2
p0(0) = e (<50 ). (19)



where 02 = 2Dpt. Using the same procedure of Eq. , but with cosf and p(A(f)), we obtain

awaw) = [ {%}p@(t»dé, (20)

(A(t)).7(ty)) = e DPrltiztal (21)

To write the msd(t) we use Egs. and (21)),

t pt t ety
Ug/ / e—DR|t1—t2|dt1dt2 — Ug/ / eDR(t2—t1)dt2dt1
0 JO

r(=t2) g it

- _U 1— —Dpgt1
DR/O< (& )dtl

U2 t
+ —O/(l—e_DRtQ)dtg,
0

Dg
B 21}0 1 oDt
msd(t) = 4Drt+ D [t+ DR( Dy, (22)
t
msd(t) = 4Drt + 20 {— + (e7 — 1)} , (23)
TR

where [, = voTg is the persistence length and 74 = 1/Dp is called persistence time. At short times,
t < 4D7/v2, the motion is diffusive with the typical Brownian short-time thermal constant diffusion,
msd(t) = 4Drt. At intermediate times, 4Dp/v} < t < 1/Dg, the motion is ballistic, and we find
msd(t) = 4Drt+v3t?. At long times ¢ > 1/Dg, the motion is diffusive com msd(t) = 4Drt+2v3t/Dg =
4Dt , where D = Dr + v3/2Dg is the diffusion coefficient constant.

2 Mean Square Displacement for a System of Active Brown-
ian Particles 7 — oo

For a system with /V interacting active Brownian particles, the center of mass position dynamics ECM(t)
follows equation

N

VEPRS R, (24)

RCM() ]\(} NZZVU

i invg

where the self orientation of each particle is given by

= v/2Dg&;(t), (25)

nd X;(t) Gaussian white noises with zero-mean with second moment (§;(t1)&;(t2)) = 9;;0(t1 —
1)-X;j(t2)) = 4D70;;6(t1 — t2) independently for each particle at each time-step. Since all

being &(t) an
) and (xi(t
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forces derived from the potential are internal, Eq. reduces to

2 v
Rm@:§ A (t)

\/ZDR
Z
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Therefore, using the same procedure of the previous section, defining M SD(t) = <(§C m(t) —

we find,
1 N N t t
_mmy:m;;mﬁémmm@w%
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where

(y(t)) = e Prtcosbyi

—Drglti—t2|

(Ri(t1).n;(ta)) = dye

Using Eq. in Eq. , we get

MSD(t) =

1 t t
— { vg/ / e~ Prl=tl gy, dt,
—+ 4DT/ / tl _tQ dtldtQ },

msd(t
MSD(t) =
( ) N )
_ 4Dr 21}8 1 Dt
MSD(t) = N t DN {t—l—DR(e Dy,
4Dp 9| t _Dnt
MSD(t) = t 2L £ 1
sp() = grerasd| L ).

(26)

Rou(0)?),

(30)

(31)

(32)

(33)

where L, = vo7gp/V N is the persistence length. We can analyze the center of mass velocity fluctuations

using Eq. (26),

_ t£>1
27 2DRt g2 0o — 0.

(34)



The second moment of Ve (t) is
2 NN
(Van) = 35> 3 Gistt)-ni(1), (36)
v

where we use {i1,(t).%; (1)) = {nu(1)) - (¥;(8)) and (T(0)-X5(0)) = (Xi(8)) . (¥,(1)). Using the Eq. [£9) in
Eq. we get

— U
(Vau() = 5. (37)
Substituting Eq. in Eq. , we obtain
4D 3}
MSD(t) = —t+2 <V02M(t)TR> [t+ Tr(e ™™ — 1)] . (38)

3 Order parameter fluctuation

From Eq. we obtain the stationary fluctuation of Vg v for a system of ABP’s,

2
Vo

5V, = <V3M> _ <VCM>2 -, (39)

the definition of the translational order parameter is

since forces in the ring are internal, we may approach |v;| ~ |vg + dv;| and rewrite Eq. in first order
approach as

N
1 S
p(t) ~ N_UO ;Ui(t) ’ (40)
while for the CM velocity we have,
. . 2 N ’
V2 = [Veu®)| = < Dm0 | (41)
comparing Egs. , and , we conclude that
1
dp()? = (1)) — () ~ (42)
1
Sp(t) = 1)2) — (p(t))* ~ —=. 43
o) = lel?) — o) ~ (43)



4 Ratio between radius of gyration of a rod and a circumfer-

ence

The radius of gyration is defined as

when the active ring is in circular format with radius R, its radius of gyration is

Nro\ 2
= R?=( =
g,cir (27’(') )

= R..(t) + Ry,(t).

(47)

ro being the distance between the particles composing the ring. In the limit the ring becomes a rod we
can approach it by two parallel chains with N/2 particles (Fig. [I) and we may calculate R,, and R,, as

follows

Thus, we got R?
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Through of Eq. and Eq. we got the ratio

When N > 1

Rypod _ [4n2 (|3 11 3
Rycir \ 48 N N2 N3
Rg rod m
——— = ——= = 0.90689.
Rg,cir 2\/§
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Figure 1 Configuration of the system in the limit of rod.

h=2?"0

Another way to calculate the ratio between the radius of gyration of a rod and a circumference it is
to approach the two chains from Fig. [1] as a rectangle of width L and height h. The moment of inertia

with respect to center of mass is

I, = / (2% + y*)odxdy,
nj L
2 2
I, = L3h
12( L+ L°h).
The superficial density o = %, h =2ryand L = Nry/2, we got
Mr 2
I = N?+16
5 (V?+16).

The relationship between radius of gyrations and moment of inertia is

_ 2
I.=MR,,
thus
2 3 2
Ry N* +16).
TOd 48 ( + )
From Eq. we have the ratio
Rg,'rod _ 4_7-‘-2 1+ E ‘
Ry cir 48 N2
For N > 1
Rg rod Q0
—— = —— = 0.90689.
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Movie Captions

Movie 1: Active ring in RUN state. Time is in units of 7.

parameters: N =20, B=0, Fn=1. — Fig 3a

Movie 2: Active ring in ROT state. Time is in units of 7.

parameters: N =20, B=0, Fn=1. — Fig 3b

Movie 3: Active ring in PRW state. Time is in units of .

parameters: N =20, B=0, Fn=1. — Fig 3c

Movie 4: Active ring in RRM state. Time is in units of 7.

parameters: N =20, B=0, Fn=1. — Fig 3d

Movie 5: Active ring in RUN state. Time is in units of 7p. Frames are separated by 0.37.

Frames are separated by 0.37.

Frames are separated by 0.37.

Frames are separated by 0.37.

Frames are separated by 0.37.

parameters: N = 100, B =0, F'n = 100, Pe =5, 7 = 0.1. — Fig 12
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