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1. Discussion on healing rate and survivability function

Physically, the healing rate must increase with the number of broken bonds.  The simplest assumption 
is that healing rate is directly proportional to the number of broken bonds divided by a characteristic 
healing time. This is a reasonable assumption since healing is achieved by ionic bonding to the 
number of available sites, so the reaction rate should be proportional to the number of broken bonds.  

Eqn (1b) (main file) is based on the following physical reasoning. The rate of decrease of connected 
bonds  should increase with the number of connected bonds, that is, N

, (S1) dN / dt b N 

where  is a monotonically increasing function of . The function  can be inferred from a load b N b
relaxation test, since in our theory the healed bonds during a perfect relaxation test do not carry load.  
In a relaxation test, the amount of load relaxation is directly proportional to the number of broken bonds, 
this allows us to determine  and we found . In our previous PVA gel system1,2, ( )N t   Bb N N

experiments showed that the bond breaking kinetics is insensitive to the applied stretch, this means that 
the rate of change of the survivability function can be written as
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However, for the PA gel system, we found that the bond breaking kinetics is sensitive to the stretch.  
Therefore, we modify eqn (S2) to reflect the effect of stretching on bond breaking.  Using the affine 
approximation, we assume that the force acting on a chain is a function of first invariant of right 
Cauchy-Green tensor , where  is the deformation tensor. As a result, the function  in eqn 1

TI  F F F b

1 These authors contributed equally to this work. Numerical simulations are done by Sairam Pamulaparthi 
Venkata. Experimental data is provided by Kunpeng Cui. 
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(S1) also depends on . We assume that  is separable, so for a chain formed at a time  and 1I b 
survived until a time , the rate of change of survivability function is t 
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There is some similarity between our idea and Erying’s theory 3(e.g. separability) which proposed that 
the bond dissociation rate has the form

 , (S4)a
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where  is the activation length for bond dissociation and  is the tensile force acting on a single aL F
polymer chain.

2. Steady state healing rate
From the second term in the R.H.S of eqn (2) (main file), we notice that the fraction of connected 
physical bonds at any time  is given byt
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By definition, the fraction of connected physical bonds before the start of loading ( ) is denoted by 0t 
. Here is it important to note that  since no loading occurs for time less than 0, that is, the  0 3H  

deformation gradient is the identity tensor for time t < 0.  In addition, for t < 0, the healing rate  is ( )t

a constant given by its steady state value ,  since the sample has rested for sufficiently long times ss
so that the system is in dynamic equilibrium.  Using eqn (S5a), we get
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In the last step, we have used the fact that .    0 3 1Hf   

By setting  in the eqn (2) (main file) and eqn (1b) (main file) with  for , we determine 0t  1f  0t 
the steady state healing rate of physical bonds to be
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3. Total strain energy



We assume that the polymer chains instantaneously relax as the bond breaks and carry zero stress. Also, 
the chains reattach in a relaxed state and carry no strain energy. By following a similar procedure as in 
our physical PA gel work4 along with the addition of strain energy due to chemical bonds, we get the 
total strain energy  to be( )W t
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4. Derivation of nominal stress from strain energy: Coleman-
Noll Procedure 

Following a similar procedure as in our previous works on PVA gel1,2,5 and on physical PA gel4, we 
briefly describe our procedure here. From eqn (S6), the total strain energy density  of the chemical ( )W t
PA gel system is given by
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Using eqn (S7) and , we can calculate the change of strain energy density  0 ( , ) 0, ( , ) 3asW H t t H t t 

with respect to time as  
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As in our physical PA gel work4, the time derivative term of in eqn (S8) can be written as( , )H t
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Also, we observe that the time derivative of survivability function does not contain time rate of change 

of deformation, . Terms associated with in eqn (S8) are equated with 0 t
ijF & .

F

 in the energy balance equation to get   10 0t t
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where  is the first Piola-Kirchhoff stress tensor with being the Lagrange multiplier enforcing P p
incompressibility. Using eqns (S8)-(S10) we get
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and
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The nominal stress in eqn (S7b) can re-written in tensor notation as
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4.1.   Nominal stress in Uniaxial Tension test
Let the nominal stretch at any given time  be . Now the deformation gradient tensor becomest ( )t
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Substituting eqn (S13) in eqn (S12) and using  to determine p, the nominal stress under uniaxial 22 0P 
tension loading is
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4.2. Nominal stress in Tensile-Relaxation test



In an actual experiment, it takes a finite loading time  before we achieve the desired nominal stretch 1t
ratio . Once the desired stretch ratio is reached it is held constant to start the relaxation test. 0

The nominal stress in the loading direction is given by

  .     (S15)
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5. Material parameter estimates from experiments
5.1. Estimate for small strain instantaneous shear modulus

Fig. S1. Fitting the initial slope from the loading portion of four tensile-relaxation tests carried out at 
four stretch ratios  (solid lines). The experimental nominal stress – nominal strain plots shown here 0
are from the same data set. We observe that all the four relaxation tests fall on the same line at small 
strains (less than 0.5%). 

The nominal stress in a uniaxial tension test is given by eqn (S14). As the loading begins, at small times 
and small strains, there are very few newly formed bonds and the fraction of physical bonds connected 
in the material are almost same as their steady state fraction . This results in integral term in the eqn 
(S14) to be small in comparison with the first term. As strains are small at short times, we can neglect 

the strain hardening   and strain dependent breaking terms to get      
 1

0

1

2
I t

dW
dI


 
 
 
 



     ,    (S16)                 
      

 

11 chem

chem che

2

m 0

0 0 0 ,
2

3 3
2

ss B

B

ss B

B

tP t t t

t E

  


        


 
   

       
 

   


 


where  is the instantaneous Young’s modulus which represents the initial slope of the nominal stress 0E
– nominal strain curve.  This allows us to use the initial slope from the loading portion of tensile-
relaxation test to determine  as shown in Fig. S1. We notice the small strain instantaneous  chem  

shear modulus to be  (1/3 of the slope of the dotted blue line) from Fig. S1.  chem 0 MP a3.3   

5.2. Estimate for critical stretch ratio c

Fig. S2. Uniaxial tension test data for chemical PA-gel for different stretch rates. 

Uniaxial tension test data in Fig. S2 shows that the slope of nominal stress versus nominal strain plots 
decrease rapidly around a critical strain of  for different loading rates. This critical strain )(1.2, 1.3c 
was associated with “yielding” in the double network gel6.  Also, the “yield” stress increases with 
increasing strain rate, but the yield strain remains almost the same. This observation is consistent with 
our assumption that the breaking kinetics in eqn (1b) (main file) is controlled by the stretch/strain 
experienced by the bond. 

6. Data sets used for optimization process
As in our physical PA gel work4, we follow a similar procedure here. The data used for optimization 
process from simple tension, tensile-relaxation, and cyclic tests is shown in Fig. S3. Here, solid black 
lines represent the experimental data and blue dotted lines represent the optimization points. The 
objective function is to minimize the least squares error in nominal stress predicted by our model (see 
eqn (S17)) at these optimization points. In Fig. S3, for brevity, LR and UR are used to represent loading 
and unloading rates respectively. To capture the change in curvature of nominal stress with nominal 
strain accurately, more weightage is given to the curved regions by selecting relatively more 
optimization points around these regions. We use a lsqcurvefit inbuilt function with trust-region-
reflective algorithm in MATLAB 2018a version for the optimization process.
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where  denotes a vector of nine material parameters in Table 1 (main file) and  refers to the  F
nominal stress predicted by our model under different loading histories (simple tension, tensile-
relaxation, and cyclic tests). Here,  is a column vector of selected nominal stretch values in simple xdata
tension and cyclic tests, and a column vector of selected time points in tensile-relaxation tests. Whereas

is the experimental nominal stress values at these corresponding  points. The lb and ub ydata xdata
denote lower and upper bonds on  respectively.

For the optimization process to be computationally efficient and less time consuming, we replace the 
history dependent reattachment rate  with the steady state value . This assumption helps  ( )t  ss

us avoid solving the integral equation (eqn (2), main file). Now, as a part of optimization process, we 
obtain multiple local optimum sets with less than 10 percent relative error between model prediction 
and experiments at any optimization point. So, we use estimates from Section S5 to select an optimal 
parameter set from these multiple optimums.

Now, with this chosen parameter set and by solving the integral equation, we recalculate 
 to check if  and slightly fine tune the ( , )ixdataF  ( , ) 0.1i i ixdata ydata ydata i    F 
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Fig. S3. We present all the representative data sets used for optimization process here (a) simple tension, 
(b) tensile-relaxation tests, and (c) loading-unloading tests which are used for least squares optimization 



process are presented here. All the 9 independent material parameters in Table 1 (main file) are 
optimized to get the minimum least squares error in nominal stress at the selected optimization points 
(shown as blue dotted circles) from all the curves shown here. Here, LR represents loading rate and UR 
represents unloading rate.

7. Exponential of power law form of breaking function and results 
As mentioned in the main file (Section 6), here we use an accelerating breaking function of form 

 as in our previous work4 and observe almost as good fits 21
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as in the results presented in the main file (Section 5). The material parameters for the model with  f
of exponential of power law form are mentioned in the Table S1.

Table S1: The material parameters required for constitutive model are listed below. 

Strain dependent parameters
1.8023B  sec0.1169Bt  sec0.01Ht  phys 0.99 

Strain dependent accelerated breaking function parameters, f
                                           0.5452m  1.0854c 

Undamaged network strain energy density function, Yeoh’s model,  0W
MPa1 / 2 1.8500c      2 1 0.2968/c c  3 1 0.1566/c c 

Derived material parameters
 (see eqn (3a), 0.9735 

main file)
  (see eqn 11.6466SS s 
(3b), main file)

  0
chem 3.6390

3
aMPE

    

Using the material parameters from Table S1, the following numerical results are computed.

7.1. Cyclic tests
7.1.1. Small strain 

The uniaxial cyclic tests for two different loading and unloading rates are presented in the Fig. S4. In 
comparison to the Fig. 1 (main file), the model with  of power law form fits the loading part slightly f
better for both the loading-unloading histories in small strain regime (see Fig. S4).



a

b

Fig. S4. Nominal stress (MPa) vs nominal stretch  for loading and unloading tests with two P 
different strain rates are shown here. (a) The upper plot has a loading rate (LR) and unloading rate (UR) 
of 0.014/s each. (b) The lower plot has a loading rate (LR) and unloading rate (UR) of 0.0014/s each. 
Solid black lines represent the experiment data and our simulation results using parameters in Table S1 
are shown as dash-dotted blue lines.

7.1.2. Large strain

We observe the nominal stress fits for cyclic tests under large strain using  with exponential of power f
law form (see Fig. S5) or power law form (see Fig. 2, main file) are both in good agreement with 
experiments.

a b c

d e f

Fig. S5. Nominal stress  (MPa) vs nominal stretch  for loading and unloading tests with different P 
strain rates are shown here. (a), (b), and (c): The upper plots have a loading rate (LR) of 0.14/s and 
unloading rates (UR) of 0.14/s, 0.014/s, and 0.0014/s from left to right respectively. (d), (e), and (f):  
Similarly, the lower plots have a loading rate of 0.0014/s and unloading rates of 0.14/s, 0.014/s, and 
0.0014/s from left to right respectively. Solid black lines represent the experiment data and our 
simulation results using parameters in Table S1 are shown as dash-dotted blue lines. 



7.2. Tensile-Relaxation tests

a b c

d e f

Fig. S6. Nominal stress  (MPa) vs time  (sec) for tensile-relaxation tests with different nominal P t
stretch ratios are shown here. Solid black lines represent the experiment data and our simulation results 
using parameters in Table S1 are shown as dash-dotted blue lines. Loading part of the tests are shown 
as insets. Relaxation tests are carried out at six stretch ratios (a) , (b) , (c) , 0 1.06  0 1.11  0 1.31 

(d) , (e) , and (f) .0 1.51  0 1.71  0 1.91 

From Fig. S6 and Fig. 3 (main file), we observe that predictions from both the models are in good 
agreement with the tensile-relaxation tests. 

7.3. Simple Tension

a b c

d e f

Fig. S7. Nominal stress  (MPa) vs nominal stretch  for simple tension tests with six loading rates P 
(LR) are presented here. (a) 0.0014/s, (b) 0.0069/s, (c) 0.014/s, (d) 0.069/s, (e) 0.14/s, and (f) 0.68/s. 



Solid black lines represent the experiment data and our simulation results using parameters in Table 
S1 are shown as dash-dotted blue lines.

By comparing Fig. S7 with Fig. 4 (main file), we observe that the model with acceleration breaking 
function  of power law form fits the tensile tests slightly better for loading rates 0.0014/s-0.014/s. f
But the general behavior captured by both the models is almost similar.

7.4. Load bearing characteristics of physical and chemical bonds

From Fig. S8 and Fig. 5 (main file), we notice that for both the models, the stress carried by both 
physical and chemical bonds for different loading histories are almost similar. This is because the 
behavior of accelerating breaking function  from both the models is almost the same (see, Fig. S9). f
So, the rate at which the physical bonds break is also similar, as characteristic breaking time  and rate Bt
of decay of survivability function  are close enough in both these models (see Table S1 and Table B
1, main file). This leads to similar loading bearing characteristics in both these models.

a b

c

Fig. S8. For different loading histories, stress contributions from both physical and chemical bonds are 
computed using our model. (a) simple tension, (b) tensile-relaxation, and (c) cyclic test. The tensile test 
is carried out using a loading rate (LR) of 0.14/s. The stretch ratio in the tensile-relaxation test is 

. The cyclic test has a loading rate (LR) of 0.14/s and an unloading rate (UR) of 0.014/s.  Solid 0 1.91 
black lines represent the experiment data, the stress contribution from physical bonds is shown in green 
dotted lines, the stress contribution from chemical bonds is shown in red dotted lines, and total stress 
contribution from both physical and chemical bonds is represented by blue dash-dotted lines.



Fig. S9. Behavior of accelerating breaking function  for two different models. The values of material f
parameters and are same as and  in Table S1. The values of material parameters  and *c

I *m cI m cI

 in power law form model are same as the ones in the Table 1 (main file).m

Next, we observe the behavior of time dependent healing rate.

Fig. S10 plots show that the behavior of healing rate of physical bonds for this model is almost similar 
to the ones presented in the Fig. 6 (main file). We observe healing rates for the accelerating breaking 
function of power law form model (See Fig. 6, main file) to be slightly higher when compared to the 
exponential of power law form model (See Fig. S10) under different loading histories. On a general 
note, healing rate increases during the loading part and decreases continuously during the relaxation 
part.

a b

c d

Fig. S10. Healing rate ( ) (in /s) for physical bonds (blue dash-dotted lines) vs time (s) for three ( )t
types of mechanical testing are shown here. (a) The top left plot is a simple tension test for a loading 
rate (LR) of 0.014/s. (b) The top right plot is a tensile-relaxation test with a desired nominal stretch ratio 



of . (c) and (d) The two lower plots are cyclic tests with a loading-unloading rates (LR-UR) 0 1.91 
of 0.14/s-0.0014/s and 0.0014/s-0.0014/s.   
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