Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2021

1 Supplementary Materials

No.	Reactions	Rate Constants (at 45 °C)
R1.	$SO_3^{2-} + H^+ \leftrightarrow HSO_3^-$	$k_1=2.0x10^{10} M^{-1} s^{-1} k_{-1}=2.0x10^3 M^{-1} s^{-1}$
R2.	$HSO_3^- + H^+ \leftrightarrow H_2SO_3$	k ₂ =12.0x10 ⁹ M ⁻¹ s ⁻¹ k- ₂ =2.0x10 ⁸ M ⁻¹ s ⁻¹
R3.	$3 \text{ HSO}_3^- + \text{BrO}_3^- \longrightarrow 3 \text{ SO}_4^{2} + \text{Br}^- + 3 \text{ H}^+$	k ₃ =0.13 M ⁻¹ s ⁻¹
R4.	$3 \text{ H}_2\text{SO}_3 + \text{BrO}_3^- \rightarrow 3 \text{ SO}_4^{2-} + \text{Br}^- + 6 \text{ H}^+$	k ₄ =30 M ⁻¹ s ⁻¹
R5.	$6 \text{ H}_2\text{SO}_3 + \text{BrO}_3^- \longrightarrow 3 \text{ S}_2\text{O}_6^{2-} + \text{Br}^- + 3 \text{ H}_2\text{O} + 6 \text{ H}^+$	$k_5=2 M^{-1} s^{-1}$

³ **Table S1.** The most important composite reactions of the BrO₃⁻ – SO₃²–pH oscillator and the rate constants at 45 °C (41,42).

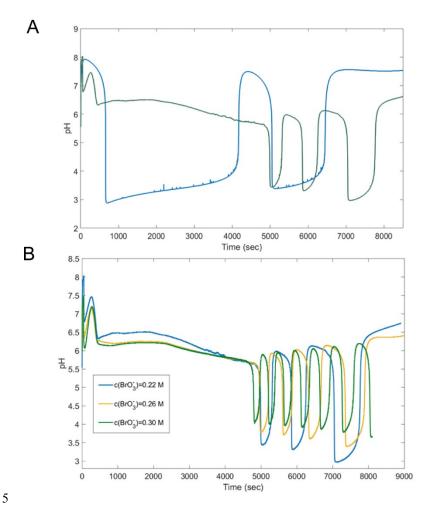


Figure S1. pH oscillation at different reaction conditions. (A) in the pure system when Na₂SO₃ (c=2.0 M) and H₂SO₄ (c=0.0675 M) was inflowed at a rate of 0.08 ml/min to 15.0 cm³ solution of 0.22 M NaBrO₃ at T = 40 °C (blue line) and in the coupled system containing 6 μmol PEG₄₅-CTA and 360 μmol DPA (other experimental conditions are the same) (green line). (B) pH oscillations when the solution of Na₂SO₃ (c=2.0 M) and H₂SO₄ (c=0.0675 M) was inflowed at a rate of 0.08 ml/min to 15.0 cm³ solution of 0.22 M (blue), 0.26 M (yellow) or 0.3 M (green) NaBrO₃ containing 6 μmol PEG₄₅-CTA and 360 μmol DPA at T = 40 °C.

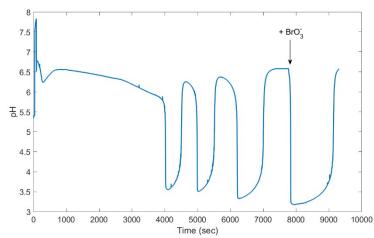


Figure S2. The revival of the pH oscillation after the addition of extra BrO_3^- (1 ml of 0.6 M Na BrO_3). Original conditions: 15.0 cm³ solution of 0.22 M NaBrO₃ containing 6 μ mol PEG₄₅-CTA and 360 μ mol DPA to which Na₂SO₃ (c=2.0 M) and H₂SO₄ (c=0.0675 M) was inflowed at a rate of 0.08 ml/min at at T = 40 °C.

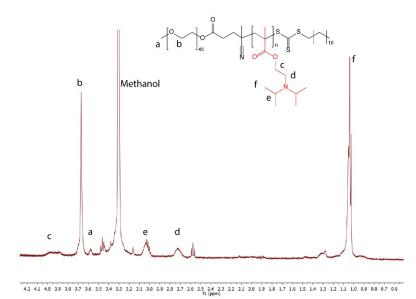


Figure S3. ¹H-NMR spectrum of PEG-b-PDPA

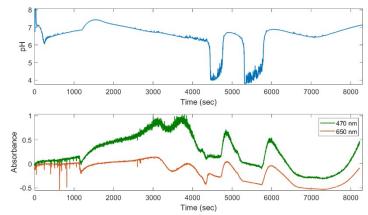


Figure S4. Measured pH oscillations and the absorbance in time at two wavelengths. The solution of Na₂SO₃ (c=2.0 M) and H₂SO₄ (c=0.06 M) was inflowed at a rate of 0.08ml/min to 15.0 cm³ solution of 0.22 M NaBrO₃ containing 6 μ mol PEG₄₅-CTA and 360 μ mol DPA at T = 40 °C.

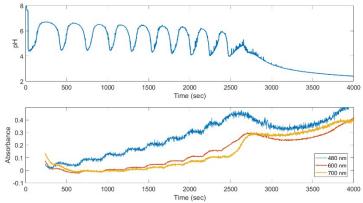


Figure S5. Measured pH oscillations and the absorbance in time at 3 wavelengths. The solution of Na₂SO₃ (c=2.0 M) and H₂SO₄ (c=0.125 M) was inflowed at a rate of 0.08ml/min to 15.0 cm³ solution of 0.20 M NaBrO₃ and 0.04 m K₄Fe(CN)₆ containing 6 μ mol PEG₄₅-CTA(2S), 390 μ mol BA and 60 μ mol AA at T = 20 °C.