Supporting Information

Hetero-Network Hydrogels Crosslinked with Silica Nanoparticles for Strategic Control of Thermal Responsive Property

M. Maria Rahman,^{a,b} Md. Ashraful Alam,^c Hirotaka Ihara,^{a,d} Makoto Takafuji^{a*}

- ^a Department of Applied Chemistry and Biochemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, Japan.
- ^b Department of Chemistry, Faculty of Science, Jagannath University, Dhaka-1100, Bangladesh.
- ^c Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, Noakhali Science and Technology University, Noakhali, Sonapur-3814, Bangladesh.
- ^d Okinawa College, National Institute of Technology, 905 Henoko, Nago, Okinawa, 905-2192, Japan.

Corresponding author Email: takafuji@kumamoto-u.ac.jp

Fig. S1 ¹H NMR spectra of thermo-sensitive polymers (*p*N, *p*M) and co-polymers (*p*NS, *p*MS).

Fig. S2 FT-IR spectra of thermo-sensitive polymers (*p*N, *p*M) and co-polymers (*p*NS, *p*MS).

Table S1

Table S1. Gelation time of aqueous solutions of pNS, pMS and mixture of pNS and pMS, with Si.^a

Si (wt.%)	<i>p</i> NS (wt%)					pMS (wt%)				mixt	ture of <i>p</i> (w	pN (wt%)	pM (wt%)		
	2	3	4	5	2	3	4	5	_	2	3	4	5	5	5
0.0	NG	NG	NG	NG	NG	NG	NG	NG		NG	NG	NG	NG		
2.5	31.5 h	28.4 h	4.0 h	90 min	8.5 h	6.0 h	2.8 h	50 min	9	9.0 h	7.2 h	3.1h	80 min		-
5.0	8.2 h	7.5 h	2.1 h	35 min	6.2 h	3.4 h	65 min	25 min	7	7.2 h	4.0 h	76 min	30 min		-
10.0	5.8 h	4.5 h	70 min	22 min	4.0 h	2.1 h	30 min	13 min	4	4.6 h	2.8 h	40 min	16 min	NG	NG
15.0	2.7 h	1.8 h	45 min	15 min	2.2 h	78 min	20 min	7 min	2	2.0 h	85 min	28 min	12 min		

^a Gelation time was measured at 25 °C by tube inversion method and Si nanoparticles size 12 nm (average diameter). NG indicates that no gelation was observed within 3 weeks. ^b Concentration were equal in mixture of pNS and pMS

Figure S4

Fig. S4. FE-SEM microphotographs of cross-sectional morphology of freeze-dried (a) copolymers, pNS(2)-pMS(3) solution and (b) pNS(2)-pMS(3)-Si(5) hydrogel.

Fig. S5 Phase transition behavior of (a) *p*NS-Si and (b) *p*MS-Si in the cooling process.

Figure S6

Fig. S6 Phase transition behavior of (a) pM and (b) pMS at different concentrations.

Fig. S7 Swelling profile of hydrogels in distilled water at 20 °C and photographs show the as prepared hydrogel and equilibrium swollen hydrogels at 20 °C after 24 h.

Fig. S8 Temperature dependencies of G' and G'' of the hetero-network hybrid hydrogels.