Supplementary Information: Structural Color from Solid-State Polymerization-Induced Phase Separation

Alba Sicher^{1,2}, Rabea Ganz¹, Andreas Menzel³, Daniel Messmer⁴, Guido

Panzarasa¹, Maria Feofilova¹, Richard O. Prum⁵, Robert W. Style¹, Vinodkumar

Saranathan⁶, René M. Rossi^{2*}, Eric R. Dufresne^{1*}

E-mail: rene.rossi@empa.ch,eric.dufresne@mat.ethz.ch

¹Laboratory for Soft and Living Materials, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland.

²Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland.

³Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland.

⁴Laboratory of Polymeric Materials, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland.

⁵Department of Ecology and Evolutionary Biology and the Peabody Museum, Yale University, New Haven, CT 06520.

⁶Division of Science, Yale-NUS College, 10 College Avenue West, 138609, Singapore.

Figure S1: Sample color as a function of PMMA fraction (X) and monomer conversion (η) . The colored area indicates the explored compositional space. Each 'x' indicates the composition of a sample. Regions corresponding to different colors are labelled.

Figure S2: Angle-independent color. The color of the PS-PMMA composites is angle-independent. a) Logarithm of the intensity as a function of wavelength and detection angle, θ . As θ increases, the intensity of the spectra at specific wavelengths decreases slightly. On the right: color bar. b) The same spectra as a function of wavelength. The measured intensity is reported on the vertical axis. Each line corresponds to a different detection angle θ .

Figure S3: *SAXS patterns*. Complete small-angle X-ray scattering patterns for samples a) #1, b) #2, and c) #3. The dark feature in the middle is the beamstop. Each axis ranges from -0.05 to +0.05 nm⁻¹. On the right of each image: color bar.

Figure S4: Size distribution of PMMA inclusion. Probability distributions of the diameters of PMMA inclusions calculated from the STEM images in Figure 4a for samples #1, #2 and #3. "Apparent" because the images section a 3D material along a 2D plane, and this affects the perceived size distribution of the spherical inclusions.