Supplementary Information

A simulation study of self-assembly of ABC star terpolymers confined between two parallel surfaces

Zhiyao Liu, Zheng Wang, Yuhua Yin, Run Jiang, and Baohui Li*

Table S1 The estimated characteristic length L_{1} values as functions of $x\left(x=N_{\mathrm{C}} / N_{\mathrm{A}}, N_{\mathrm{A}}=N_{\mathrm{B}}\right)$ and λ $\left(\lambda=\varepsilon_{\mathrm{AC}} / \varepsilon_{\mathrm{AB}}, \varepsilon_{\mathrm{AC}}=\varepsilon_{\mathrm{BC}}\right)$ for phases listed in Fig. 1.

\boldsymbol{x}														
$\boldsymbol{L}_{\mathbf{1}}$	$\mathbf{2 / 6}$	$\mathbf{3 / 6}$	$\mathbf{4 / 6}$	$\mathbf{5 / 6}$	$\mathbf{6 / 6}$	$\mathbf{7 / 6}$	$\mathbf{8 / 6}$	$\mathbf{9 / 6}$	$\mathbf{1 0 / 6}$	$\mathbf{1 1 / 6}$	$\mathbf{1 2 / 6}$	$\mathbf{1 3 / 6}$	$\mathbf{1 4 / 6}$	$\mathbf{1 5 / 6}$
$\mathbf{2 . 0}$	13.1	17.5	17.6	18.6	19.6	-	-	-	11.5	12.3	12.5	12.5	12.6	13.2
$\mathbf{1 . 0}$	10.5	11.2	12.6	18.8	19	19.4	21.4	-	-	-	-	12.6	13.3	13.5
$\mathbf{0 . 5}$	10.4	13.9	12.3	12.1	12.2	20.6	20.2	20	20.4	-	-	-	-	-

$$
\begin{aligned}
& {[\mathrm{L}+\mathrm{C}]^{\perp} \quad[\mathrm{L}+\mathrm{C}]_{\mathrm{BC}}^{/ /} \quad[\mathrm{L}+\mathrm{C}]_{\mathrm{BC}}^{/ /} \quad[\mathrm{L}+\mathrm{C}]_{\mathrm{BC}}^{/ /}}
\end{aligned}
$$

(a)

$$
[\mathrm{L}+\mathrm{C}]_{\mathrm{BC}}^{/ /} \quad[\mathrm{L}+\mathrm{C}]_{\mathrm{BC}}^{/ /} \quad[\mathrm{L}+\mathrm{C}]_{\mathrm{BC}}^{/ /} \quad[\mathrm{L}+\mathrm{C}]_{\mathrm{BC}}^{/ /}
$$

$D / L_{1}=0.56 \quad 0.72-1.2 \quad 1.36-2.16 \quad$ 2.16-2.48

Fig. S1 Phase sequences as a function of D / L_{1} for the bulk $[L+C]$-forming star terpolymers $\mathrm{A}_{6} \mathrm{~B}_{6} \mathrm{C}_{12}$ with $\lambda=2$ in the thin films at different surface filed: (a) $\varepsilon_{\mathrm{AS}}=1.0, \varepsilon_{\mathrm{BS}}=0.3, \varepsilon_{\mathrm{CS}}=0.2$; (b) $\varepsilon_{\mathrm{AS}}=1.0, \varepsilon_{\mathrm{BS}}=0$, $\varepsilon_{\mathrm{CS}}=0.5$. Oblique views of A- and B- domains are shown. Color scheme: A (blue), B (green).

Fig. S2 Variations of normalized (a) interface energy, (b) mean-square radius of gyration, (c) surface energy and (d) total energy with D / L_{1} for terpolymers $\mathrm{A}_{6} \mathrm{~B}_{6} \mathrm{C}_{12}$ with $\lambda=2\left(\varepsilon_{\mathrm{AB}}=1.0, \varepsilon_{\mathrm{AC}}=\varepsilon_{\mathrm{BC}}=2.0\right)$. $<R g_{\text {Bulk }}^{2}>$ is the mean-square radius of gyration for the corresponding bulk phase. $E_{\mathrm{ABC}} / D=\left(\varepsilon_{\mathrm{AB}} \times n_{\mathrm{AB}}+\varepsilon_{\mathrm{AC}} \times n_{\mathrm{AC}}+\varepsilon_{\mathrm{BC}} \times n_{\mathrm{BC}}\right) / D, E_{\mathrm{SS}} / D=\left(\varepsilon_{\mathrm{CS}} \times n_{\mathrm{CS}}\right) / D, n_{\mathrm{AB}}, n_{\mathrm{AC}}, n_{\mathrm{BC}}$ and n_{CS} are the average of the contact number between segments A and B, A and C, B and C , and surfaces and C, respectively. $E=E_{\mathrm{SS}}+E_{\mathrm{ABC}}$. Some snapshots obtained at $\varepsilon_{\mathrm{CS}}=-1.0$ and $\varepsilon_{\mathrm{CS}}=1.0$ are also shown in (a) and (b), respectively.

Fig. S3 (a) A schematic illustration of the characteristic lengths L_{1} and L_{2} in a [8.8.4] phase. Phase sequences as a function of D / L_{1} for the bulk [8.8.4]-forming star terpolymers $\mathrm{A}_{6} \mathrm{~B}_{6} \mathrm{C}_{4}$ with $\lambda=0.5$ in the thin films at different $\varepsilon_{\mathrm{AS}}$ values. (b) $\varepsilon_{\mathrm{AS}}=0.2$, (c) $\varepsilon_{\mathrm{AS}}=0.5$, (d) $\varepsilon_{\mathrm{AS}}=-0.2$, (e) $\varepsilon_{\mathrm{AS}}=-0.5$. Top view is given for phase $[8.8 .4]^{\perp}$, side view is given for parallel phases 'and oblique view is given for phases with A-wetting layers.

Fig. S4 Phase diagrams in space of arm length ratio $x=N_{\mathrm{C}} / N_{\mathrm{A}}\left(N_{\mathrm{A}}=N_{\mathrm{B}}\right)$ and film thickness D for ABC star terpolymers with $\quad \lambda=0.5\left(\varepsilon_{\mathrm{AC}}=\varepsilon_{\mathrm{BC}}=1.0, \varepsilon_{\mathrm{AB}}=2.0\right)$ confined between neutral surfaces.

