Amphiphilic, thixotropic additives for extrusion-based 3D printing of silica-reinforced silicone

Jakkrit Suriboot,^a Alec C. Marmo,^b Bryan Khai D. Ngo,^a Aman Nigam,^c Denisse Ortiz-Acosta,^d Bruce L. Tai,^c and

Melissa A. Grunlan*a,b,d

- a. Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
- b. Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA.
- c. Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA.
- d. Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545.
- e. Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.

Electronic Supplementary Information:

Table S1. Properties of PEO-SA SMAs, including PEO content (wt%) in a 5 wt% SMA mixture.

	Architecture	MW (g/mol)	PDMS Repeat Units	PEO Repeat Units	PEO Content (wt%)
PEO Control	Linear	588	-	8	2.99%
TSP ₁₃	Linear	1710	13	8	1.03%
TSP ₃₀	Linear	2968	30	8	0.59%
HSP ₁₃	Linear	1520	13	8	1.16%
HSP ₃₀	Linear	2778	30	8	0.63%
Triblock [SP]	Linear	1944	13	16	1.81%
Star [SP]	Star	5872	52	32	1.20%
SGP	Graft	5650	52	4	0.16%
Triblock [SGP]	Graft	6470	52	6	0.20%

 Table S2. Per Figure 2a, static contact angle (DI water) values for Sylgard 184 formulations with no additional filler added.

	$t = 0 \min$	t = 1 min	t = 2 min
Sylgard 184	$113.7^\circ\pm3.5^\circ$	$111.3^\circ\pm2.0^\circ$	$110.6^\circ\pm1.9^\circ$
PEO Control	$112.2^\circ\pm5.7^\circ$	$103.2^\circ\pm2.6^\circ$	$99.6^\circ\pm2.9^\circ$
TSP ₁₃	$92.4^\circ\pm3.6^\circ$	$34.8^\circ\pm5.7^\circ$	$33.3^\circ\pm5.7^\circ$
TSP ₃₀	$99.0^\circ\pm13.1^\circ$	$80.4^\circ\pm15.1^\circ$	$61.7^\circ\pm12.0^\circ$
HSP ₁₃	$99.7^\circ\pm1.8^\circ$	$74.1^\circ\pm3.4^\circ$	$45.5^\circ\pm2.9^\circ$
HSP ₃₀	$83.3^\circ\pm1.4^\circ$	$77.1^\circ\pm0.6^\circ$	$59.3^\circ\pm1.0^\circ$
Triblock [SP]	$31.1^\circ\pm4.2^\circ$	$11.5^\circ\pm1.3^\circ$	$11.2^{\circ} \pm 1.1^{\circ}$
Star [SP]	$95.6^\circ\pm7.6^\circ$	$15.8^\circ\pm3.2^\circ$	$13.6^\circ\pm2.4^\circ$
SGP	$105.6^\circ\pm1.5$ $^\circ$	$91.3^\circ\pm2.8^\circ$	$80.2^\circ\pm2.1^\circ$
Triblock [SGP]	$102.2^\circ\pm3.1^\circ$	$89.3^\circ\pm1.6^\circ$	$82.2^\circ\pm1.8^\circ$

$5^{\circ} \pm 4.9^{\circ}$ 106.0° ± 2.5°	$105.1^{\circ} \pm 2.6^{\circ}$
$3^{\circ} \pm 2.3^{\circ}$ 101.6° ± 1.7°	$96.7^\circ \pm 0.9^\circ$
$3^{\circ} \pm 5.3^{\circ}$ $72.7^{\circ} \pm 1.7^{\circ}$	$55.6^\circ\pm3.9^\circ$
$5^{\circ} \pm 3.7^{\circ}$ 93.7° ± 3.7°	$76.6^\circ\pm2.7^\circ$
$9^{\circ} \pm 1.2^{\circ}$ $94.0^{\circ} \pm 1.7^{\circ}$	$87.3^{\circ} \pm 1.7^{\circ}$
$^{\circ} \pm 3.8 ^{\circ}$ $82.9^{\circ} \pm 4.0^{\circ}$	$56.7^\circ\pm1.9^\circ$
$6.3^{\circ} \pm 5.4^{\circ}$	$5.4^\circ\pm4.7^\circ$
$^{\circ} \pm 2.0^{\circ}$ 11.2° ± 3.2°	$3.0^\circ\pm5.2^\circ$
$^{\circ} \pm 2.9 ^{\circ} $ 87.9° $\pm 3.0^{\circ}$	$73.8^\circ\pm1.0^\circ$
$^{\circ} \pm 0.9^{\circ}$ 97.6° ± 4.1°	$89.6^\circ\pm3.6^\circ$
	$5^{\circ} \pm 4.9^{\circ}$ $106.0^{\circ} \pm 2.5^{\circ}$ $8^{\circ} \pm 2.3^{\circ}$ $101.6^{\circ} \pm 1.7^{\circ}$ $8^{\circ} \pm 5.3^{\circ}$ $72.7^{\circ} \pm 1.7^{\circ}$ $5^{\circ} \pm 3.7^{\circ}$ $93.7^{\circ} \pm 3.7^{\circ}$ $9^{\circ} \pm 1.2^{\circ}$ $94.0^{\circ} \pm 1.7^{\circ}$ $9^{\circ} \pm 3.8^{\circ}$ $82.9^{\circ} \pm 4.0^{\circ}$ $9^{\circ} \pm 27.3^{\circ}$ $6.3^{\circ} \pm 5.4^{\circ}$ $9^{\circ} \pm 2.0^{\circ}$ $11.2^{\circ} \pm 3.2^{\circ}$ $10^{\circ} \pm 2.9^{\circ}$ $87.9^{\circ} \pm 3.0^{\circ}$ $10^{\circ} \pm 0.9^{\circ}$ $97.6^{\circ} \pm 4.1^{\circ}$

Table S3. Per **Figure 2b**, static contact angle (DI water) values for Sylgard 184 formulations with 5 wt% additional HMDS-treated silica filler added.

Table S4. Per **Figure 3a**, **Figure 3b**, and **Figure 3c**, respectively, yield stress values for uncured Sylgard 184 formulations with 0, 5 wt%, and 17.3 wt% of additional HMDS-treated silica filler added,

	No Filler Added (Pa)	5 wt% HMDS Filler Added (Pa)	17.3 wt% HMDS Filler Added (Pa)
Sylgard 184	n/a	n/a	n/a
Triblock [SP]	141 ± 84	87 ± 55	84 ± 5
Star [SP]	75 ± 18	65 ± 30	194 ± 47
SGP	40 ± 18	31 ± 7	212 ± 14
Triblock [SGP]	40 ± 17	22 ± 6	92 ± 11

Table S5. Yield stress values for uncured Sylgard 184 formulations with 17.3 wt% of additional DiMeDi-treated silica filler added, as shown in **Figure 4**.

	Yield Stress (Pa)
Sylgard 184	539 ± 48
Triblock [SP]	3385 ± 1238
Star [SP]	1405 ± 162
SGP	1727 ± 224
Triblock [SGP]	1307 ± 512

Figure S1. 3 Interval thixotropy test (3ITT) of uncured formulations: unmodified silicone (Sylgard 184) and modified silicones, each containing 17.3 wt% additional DiMeDi silica filler, along with the designated additive: (1) 120 s of oscillation at a constant 1% strain amplitude, (2) 120 s of rotation at a constant shear rate of 1,000 Hz, (3) 300 s of oscillation at a constant 1% strain amplitude (i.e. the recovery period).

Figure S2. The extrusion-based 3D printing setup using a syringe-type pneumatic material dispenser.

Table S6. Per **Figure 5b**, storage modulus (G') after recovery of uncured formulations: unmodified silicone (Sylgard 184) and modified silicones, each containing 17.3 wt% additional DiMeDi silica filler, along with the designated additive.

	Storage Modulus (Pa)
Sylgard 184	608.4 ± 111.9
Thixo Agent AC (17.3 wt%)	$4,272 \pm 4,400$
Triblock [SP]	$\textbf{8,}\textbf{286} \pm \textbf{2,}\textbf{607}$
Star [SP]	$11,023 \pm 5,014$
SGP	$5,225 \pm 2,225$
Triblock [SGP]	$102,\!48 \pm 1,\!239$

Table S7. Per **Figure 5c**, loss factor (G"/G') after recovery for uncured formulations: unmodified silicone (Sylgard 184) and modified silicones, each containing 17.3 wt% additional DiMeDi silica filler, along with the designated additive.

	Loss Factor (G"/G')
Sylgard 184	$0.80 \pm .10$
Thixo Agent AC (17.3 wt%)	0.55 ± 0.15
Triblock [SP]	0.63 ± 0.12
Star [SP]	0.56 ± 0.11
SGP	0.68 ± 0.020
Triblock [SGP]	0.62 ± 0.059

Table S8. Per **Figure 6**, extrusion pressure and print speeds for uncured formulations: unmodified silicone (Sylgard 184) and modified silicones, each containing 17.3 wt% additional DiMeDi silica filler, along with the designated additive.

Formulation	Extrusion Pressure (psi)	Print Speed (mm/min)
Unmodified	26	737.7
Thixo Agent AC	32	789.5
Triblock [SP]	62	818.2
Star [SP]	78	692.3
SGP	76	748.2
Triblock [SGP]	74	668.8

Table S9. Per **Figure 7**, static contact angle (DI water) values for uncured formulations: unmodified silicone (Sylgard 184) and modified silicones, each containing 17.3 wt% additional DiMeDi silica filler, along with the designated additive.

	$t = 0 \min$	t = 1 min	t = 2 min	t = 3 min	$t = 4 \min$	t = 5 min
Sylgard 184	$116.0^\circ\pm1.5^\circ$	$112.5^\circ\pm0.8^\circ$	$111.7^\circ\pm0.7^\circ$	$109.8^\circ\pm2.8^\circ$	$107.9^\circ\pm2.7^\circ$	$107.2^\circ\pm2.5^\circ$
Triblock [SP]	$124.3^\circ\pm1.4^\circ$	$81.0^\circ\pm3.1^\circ$	$61.2^\circ\pm3.1^\circ$	$52.9^\circ\pm2.8^\circ$	$47.9^\circ\pm3.0^\circ$	$43.9^\circ\pm3.0^\circ$
Star [SP]	$121.2^\circ\pm2.0^\circ$	$118.2^\circ\pm1.4^\circ$	$105.0^\circ\pm2.8^\circ$	$97.0^\circ\pm3.6^\circ$	$86.6^\circ\pm4.3^\circ$	$78.0^\circ\pm3.0^\circ$

Figure S3. ¹H NMR of "*TSP*₁₃", (CDCl3; δ , ppm): 0.05-0.10 (m, 90H, SiCH₃), 0.47-0.55 (m, 2H, SiCH₂CH₂CH₂), 0.55-0.57 (m, 3H, SiCH₂CH₂), 1.15-1.19 (m, 1H, SiCH₂CH₂), 1.19-1.26 (t, *J* = 7.0 Hz, 9H, [CH₃CH₂O]₃Si), 1.54-1.66 (m, 2H, SiCH₂CH₂CH₂), 3.38 (s, 3H, OCH₃), 3.39-3.45 (t, *J* = 6.9 Hz, 2H, SiCH₂CH₂CH₂), 3.50-3.70 (m, 32H, CH₂CH₂O) and 3.78-3.86 (q, *J* = 7.0 Hz, 6H, [CH₃CH₂O]₃Si).

Figure S4. ¹H NMR of "*TSP*₃₀", (CDCl3; δ , ppm): 0.05-0.10 (m, 192H, SiCH₃), 0.47-0.55 (m, 2H, SiCH₂CH₂CH₂), 0.55-0.57 (m, H, SiCH₂CH₂), 1.15-1.19 (m, 1H, SiCH₂CH₂), 1.19-1.26 (t, *J* = 7.0 Hz, 9H, [CH₃CH₂O]₃Si), 1.54-1.66 (m, 2H, SiCH₂CH₂CH₂), 3.38 (s, 3H, OCH₃), 3.39-3.45 (t, *J* = 6.9 Hz, 2H, SiCH₂CH₂CH₂), 3.50-3.70 (m, 32H, CH₂CH₂O) and 3.78-3.86 (q, *J* = 7.0 Hz, 6H, [CH₃CH₂O]₃Si).

Figure S5. ¹H NMR of "*HSP*₁₃", (CDCl3; δ , ppm): 0.05-0.10 (m, 84H, SiCH₃), 0.17-0.19 (d, J = 2.8 Hz, 6H, OSi[CH₃]₂H), 0.47-0.55 (m, 2H, SiCH₂CH₂CH₂), 1.56-1.64 (m, 2H, SiCH₂CH₂CH₂), 3.38 (s, 3H, OCH₃), 3.39-3.44 (t, J = 6.9 Hz, 2H, SiCH₂CH₂CH₂), 3.52-3.70 (m, 32H, CH₂CH₂O), 4.65-4.75 (m, 1H, SiH).

Figure S6. ¹H NMR of "*HSP*₃₀", (CDCl3; δ , ppm): 0.05-0.10 (m, 186H, SiCH₃), 0.17-0.19 (d, J = 2.8 Hz, 6H, OSi[CH₃]₂H), 0.47-0.55 (m, 2H, SiCH₂CH₂CH₂), 1.56-1.64 (m, 2H, SiCH₂CH₂CH₂), 3.38 (s, 3H, OCH₃), 3.39-3.44 (t, J = 6.9 Hz, 2H, SiCH₂CH₂CH₂), 3.52-3.70 (m, 32H, CH₂CH₂O), 4.65-4.75 (m, 1H, SiH).

Figure S7. ¹H NMR of "*Triblock [SP]*", (CDCl3; δ , ppm): 0.05-0.10 (m, 90H, SiCH₃), 0.47-0.55 (m, 4H, SiCH₂CH₂CH₂CH₂), 1.56-1.64 (m, 4H, SiCH₂CH₂CH₂), 3.38 (s, 6H, OCH₃), 3.39-3.44 (t, *J* = 6.9 Hz, 4H, SiCH₂CH₂CH₂), 3.52-3.70 (m, 64H, CH₂CH₂O).

Figure S8. ¹H NMR of "*Star [SP]*", (CDCl3; δ, ppm): 0.02-0.13 (m, 336H, SiCH₃), 0.48-0.54 (m, 8H, SiCH₂CH₂CH₂CH₂), 1.54-1.64 (m, 8H, SiCH₂CH₂CH₂), 3.37 (s, 12H, OCH₃), 3.41 (t, J = 7.12 Hz, 8H, SiCH₂CH₂CH₂CH₂), 3.53-3.70 (m, 128H, CH₂CH₂O).

Figure S9. ¹H NMR of "*SGP*", (CDCl3; δ , ppm): 0.02-0.18 (m, 318H, SiCH₃), 0.45-0.54 (m, 8H, SiCH₂CH₂CH₂CH₂), 1.57-1.72 (m, 8H, SiCH₂CH₂CH₂), 3.40 (s, 12H, OCH₃), 3.42 (t, J = 7.08 Hz, 8H, SiCH₂CH₂CH₂CH₂), 3.55-3.69 (m, 128H, CH₂CH₂O).

Figure S10. ¹H NMR of "*Triblock [SGP]*", (CDCl3; δ, ppm): 0.03-0.26 (m, 312H, SiC*H*₃), 0.41-0.54 (m, 12H, SiC*H*₂CH₂CH₂), 1.51-1.66 (m, 12H, SiCH₂C*H*₂CH₂), 3.37 (s, 18H, OC*H*₃), 3.40 (t, J = 7.12 Hz, 12H, SiCH₂CH₂CH₂), 3.50-3.70 (m, 192H, CH₂CH₂O).