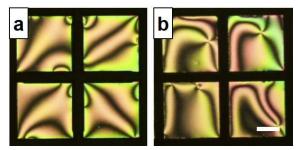

Electronic Supplementary Information (ESI)

Simple, Rapid and Sensitive Detection of Parkinson's Disease Related Alpha-Synuclein by DNA Aptamer Assisted Liquid Crystal Biosensor


Xiuxiu Yang,^a Xiaofang Zhao,^b Fengwei Liu,^b Haiyu Li,^a Claire Xi Zhang^{*b} and Zhongqiang Yang^{*a}

^a*Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.*

^bBeijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China.

Fig. S1 Optical images (crossed polars) of LC-aqueous interface in the presence of 30 μ L (a) PBS buffer or (b) 0.75 μ M DNA aptamer for 10 min, respectively. The scale bar is 100 μ m.

Fig. S2 Optical images (crossed polars) of LC-aqueous interface in the presence of 30 μ L (a) PBS buffer or (b) 100 pM α S for 10 min, respectively. The scale bar is 100 μ m.

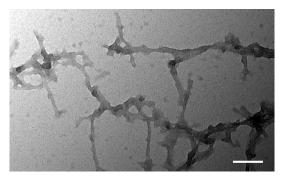
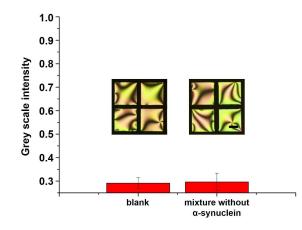



Fig. S3 The transmission electron microscopy characterization of αS fibrils. The scale bar is 100 nm.

Fig. S4 Grey scale intensity of blank, 100 pM mixture of proteins (α S, α S fibril, BSA, α -chymotrypsinogen A, α -lactalbumin and lysozyme at equal ratio) without α S and corresponding optical images (crossed polars). The scale bar is 100 µm.

Matlab Code Used for Characterization of Grey Scale Intensity

file_path = 'C: ';% Image folder path

img_path_list = dir(strcat(file_path,'*.jpg'));% Get all JPG images in this folder

img_num = length(img_path_list);% Total number of images

Result_Value = zeros(img_num,1);% Preset blank array to give gray value of image addpath(file_path);

i = 1;% Cycle the gray level of each image and assign it to the cells in the corresponding array while i <= img_num</p>

Orig_Picture = imread (img_path_list(i).name);% Read image

Gray_Picture = im2bw(Orig_Picture,0.2);% Graying color images

Light_Pixel_Num = nnz (Gray_Picture);% Count the number of pixels in the non-blank area

[m, n] = size(Gray_Picture);% Measure the length and width pixel size of gray image

Picture_Pixel_Num = m * n;% Number of pixels in grayscale image

Result_Value(i,1) = Light_Pixel_Num / Picture_Pixel_Num;% Calculate the proportion of non-blank area in the image

i= i + 1;

end