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Materials. N-isopropylacrylamide (NIPAM) was recrystallized in a benzene/n-hexane mixture. N,N'-

Methylenebis(acrylamide) (BIS) was recrystallized in methanol. Potassium persulfate (KPS) and 

sodium dodecyl sulfate (SDS) were used as received. All chemicals were purchased from Sigma-

Aldrich, US as analytical reagent.

Microgel Synthesis. PNIPAM microgels were synthesized via a standard one-pot precipitation 

polymerization.1 NIPAM (8.09 g), BIS (0.58 g), and SDS (0.29 g) were dissolved in 295 mL MilliQ 

water and put into a flask with a magnetic stirrer, a reflux condenser, and a nitrogen gas inlet. After 

the solution was stirred for 40 min at 70 ℃ under nitrogen, KSP (0.27 g)/5 mL MilliQ water was 

injected to initiate the polymerization. The reaction was maintained at 70 ℃ for 4 hours. To remove 

unreacted chemicals and surfactants, the dispersion was purified via filtration (0.45 μm Nylon filter 

membranes, Sigma-Aldrich, US) and dialysis (50 kDa MWCO, Spectra/Por Labs, CA) for 4 days. The 

dispersion was concentrated to 0.0554 g/mL by rotary evaporation.

Characterizations. The hydrodynamic diameter Dh of the microgels was determined by dynamic light 

scattering (ALV/DLS/SLS-5022F, correlator ALV5000, λ = 632.8 nm) at c = 4.3 × 10-7 w/w. The DLS 

data corresponded to the intensity autocorrelations at scattering angles from 20° to 40°, each 
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measurement was acquired over 300 seconds. The solution was allowed to equilibrate at least for 1 

hour at each temperature before measurement.

The intrinsic viscosity [η] of the microgel dispersions was measured through a Cannon-Ubbelohde 

viscometer (No. 25-B164, Cannon Instrument Co., US) at c = 2−10 mg/mL. The effective volume 

fraction ϕeff of the microgels was estimated by ϕeff = bcDh
3/2.5, where b is the proportionality constant 

between [η] and Dh
3 based on the Huggins and Mead–Fuoss plots.2-4

The zeta potential ζ of the microgels was determined via a Zetasizer Nano (ZS90, Malvern 

Instruments Inc., UK) at c = 5.5 × 10-5 w/w. The measurement was conducted three times at set 

temperatures with an equilibration time ≥ 5 min. ζ is presented as the mean ± standard deviation.

The penetration depth dp was estimated by , where λ = 632.8 nm is the dP = λ [4π (n1sinθ)2 - n2
2]

laser wavelength, θ = 70° is the incident angle, n1 = 1.52 is the refractive index of the 70° prism, and 

n2 ≈ 1.35 is the refractive index of the dispersion at c = 0.0554 g/mL at temperatures from ~35 ℃ to 

40 ℃, which was measured by an Abbe refractometer (Model 102539, 2WA-J, Shanghai, CN).

Instrumental setup. The microgel dispersion was injected into an ultrathin flow cell (200  inner μm

thickness, hollow rectangular capillaries, Borosilicate Glass Co., US), placed on a homemade thermal 

control device (see Fig. S2) including a recirculating water bath (THX-05, Ningbo Tianheng 

Instrument Co., CN), two Peltier modules (TEC1-06306, Hebei I.T. (Shanghai) Co. Ltd., CN), and a 

PID controller with three negative temperature coefficient (NTC) sensors (PR-59, Laird Technologies 

Inc., US). For each measurement, the temperature was increased from room temperature (~ 25 ℃) to 

a set one at a rate of ~ 0.1 ℃/min. Once the set temperature is reached, the images were recorded for 

10 s at t = 0 s, 300 s, 600 s, and 1200 s, respectively.

The thermal control device was equipped on an inverted Leica DM LFSA microscope with a 50× 

objective (N PLAN, NA = 0.5, WD = 7 mm). An evanescent field was generated by a laser beam with 

a wavelength of 632.8 nm at the glass/liquid interface where the penetration depth dp is ~ 110 nm. The 

scattering images were captured by a sCMOS camera (Zyla 5.5, 2560 × 2160 pixels, pixel size = 6.5 

μm, Andor Technology Ltd., UK) at a sampling rate of 10–50 fps. More details could be found in Fig. 

S2.
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Fig. S1  (a) The hydrodynamic diameter Dh (squares) and zeta potential ζ (circles) of PNIPAM microgels as a 
function of temperature. (b) Typical particle size distribution of microgels at 25 ℃. The polydispersity index (Pdi) < 
0.05. (c) The intrinsic viscosity [η] of microgel dispersions as a function of Dh

3. (d) The effective volume fraction 
ϕeff of microgels as a function of temperature.

Fig. S2  Schematic of the thermal control device incorporated on a total internal reflection microscope (TIRM). P 
is the 70° prism, PM1 and PM2 are the Peltier modules and/or copper plates (yellow). T0, T1, and T2 are temperatures 
at individual regions along the flow cell. d (~5 mm) is the distance between regions T1 and T2. At region T1, an 
evanescent field is generated on the liquid/glass interface with dP ~ 110 nm, where the scattering intensity is recorded 
by a sCMOS camera.
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Fig. S3  Original total internal reflection microscope (TIRM) images of colloidal gels. The dynamic speckles emerge 
after 34 ℃, corresponding to ϕeff ~ 0.23. Scale bars represent 5 μm. Gray scale represents the intensity.

Fig. S4  Cluster size distribution in count (a) and histogram (b) at different temperatures. The clusters are 2D 
projections, which sizes are counted based on a sequence of binarized images after default thresholding via ImageJ.
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Fig. S5  Typical density-fluctuation autocorrelation functions (δACF) for ϕeff varying from 0.103 to 0.168 at various 
q from 0.31 μm-1 to 1.92 μm-1 (t = 600 s).

Fig. S6  Fitting parameters p and α for the compressed exponential decay functions at different ϕeff at various q from 
0.31 μm-1 to 1.92 μm-1 (t = 600 s).
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Fig. S7  Relaxation time τ as a function of ϕeff at various q from 0.31 μm-1 to 1.92 μm-1 at t = 0 s (a), 300 s (b), 600 
s (c), and 1200 s (d). The dash-dotted lines represent the linear fitting. 
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