
Electronic supplementary information for: Dependence
of phase behavior and surface tension on particle stiffness
for active Brownian particles†

Nicholas Lauersdorfa‡, Thomas Kolbb‡, Moslem Moradia, Ehssan Nazockdasta and Daphne
Klotsa∗a

The Electronic Supplementary Information section contains additional figures, videos and data that
supplement the discussion in the main text.

1 Choosing the proportionality constant, β ,
of the pair force

The analytical prediction of the lattice spacing (a) hinges on
the balance between both the pair active force (Fpair = βFa)
and the repulsive interparticle force within the bulk dense phase
(FWCA(a)) and, therefore, our choice of the proportionality con-
stant, β . In addition, our analytical calculations for the cluster
radius (rc), the interparticle pressure (ΠP), and the surface ten-
sion (γ) are strongly dependent on the lattice spacing (a) and, in
turn, β . As a result, it is critical to find a β that best predicts our
lattice spacing from simulation. As we show in fig. 2, one can
determine β by fitting eq. 6 to our measured values for a vs F∗

from simulation.
We quantify the quality of fit through measuring the coefficient

of determination:

R2 = 1− ∑i(ai− âi)
2

∑i(ai−a)2 , (1)

where ai is our ith lattice spacing from simulation, a is the mean
lattice spacing from simulation, and âi is our ith lattice spacing
from theory (Using eq. 6 in paper). β is chosen to be where R2 is
closest to 1.0. By this standard, we obtain a strong fit (R2 > 0.99)
at β ≈ 2 (R2 > 0.995). The optimal fit is found to be when β =

1.92, resulting in a maximum R2 = 0.9963.

2 Computing the dense phase composition
of soft ABPs

We start with a few basic relations for the number of particles
(N), simulation area (A), and area fraction (φ) for particles with
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area, Ap = πσ 2

4 in the dense (d) and gas (g) phases.

N = Nd +Ng. (2)

A = Ad +Ag. (3)

φ =
NAp

A
. (4)

We now proceed in deriving an expression for the number of par-
ticles in the dense phase (Nd). To this end, we begin with equa-
tion 3, substituting using equation 4,

NAp

φ
=

NdAp

φd
+

NgAp

φg
. (5)

We can divide through by the particle area, and rearrange to iso-
late, Nd,

Nd = φd

(
N
φ
−

Ng

φg

)
. (6)

To remove the dependence on Ng, we substitute equation 2 into
equation 6:

Nd = φd

(
N
φ
− N−Nd

φg

)
. (7)

Through algebraic simplification, we solve for Nd :

Nd
φd

=
N
φ
− N

φg
+

Nd
φg

, (8)

Nd
φd
− Nd

φg
=

N
φ
− N

φg
, (9)

Nd

(
1

φd
− 1

φg

)
= N

(
1
φ
− 1

φg

)
, (10)

Nd

(
φg−φd

φdφg

)
= N

(
φg−φ

φφg

)
. (11)
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Finally, we solve for the dense phase size as a function of sys-
tem (φ), gas phase (φg) and dense phase (φd) area fractions in
addition to the total system size (N),

Nd = N
(

φd(φg−φ)

φ(φg−φd)

)
. (12)

3 Instantiating Seeded Clusters
As shown by Levis et al., soft particles undergo MIPS at a smaller
critical cluster size than hard particles due to a lower nucleation
barrier1. However, this similarly impacts the stability of MIPS.
Due to a lower nucleation barrier, softer clusters are more likely
to destabilize and break apart before reaching a stable configura-
tion. Therefore, since our softest systems rarely underwent MIPS
from random initial conditions within τ = 300τr, we instantiated
small circular clusters at a dense-phase area fraction (φd) pre-
dicted in eq. 8 of paper, of size that is at least one fourth of and
no more than equal to its predicted steady state size (Nd from
eq. 12), thus accelerating the process of overcoming kinetic lim-
itations of cluster formation and, in turn, reducing the necessary
computation time.

We see that instantiating initially seeded clusters does not influ-
ence whether MIPS occurs or not in our systems as systems that
are not predicted to undergo MIPS quickly destabilized, forming
a single, homogeneous gas phase. Similarly, the resulting phase-
separated, steady-state cluster structure (fig. S1) and size (fig.
S2) are independent of the initially seeded cluster size.

4 Method for Determining the Cluster Ra-
dius and Interface Width

In section §4.1, we label the dense-dilute interface as the region
within the dense phase with both sharply decreasing area frac-
tion and large inwards orientational alignment of particles’ body
forces. In this section, we shall detail our mathematical approach
to discerning this region. The dense phase exhibits two spatial
regions of varying properties: a bulk dense phase and a dense-
dilute interface2. The bulk dense phase has constant number
density, n(r), and negligible alignment towards the cluster’s cen-
ter of mass, α(r) = −p̂(r) · r; whereas, the dense-dilute interface
exhibits a monotonically decreasing density from the dense to
the dilute phase density2, resembling that of typical equilibrium
liquid-gas interfaces3–5, and a high degree of alignment towards
the cluster’s center of mass. Exploiting these distinct trends in the
interface and bulk dense phase, we have mathematically defined
the interface and detail a computational procedure for determin-
ing the start and end of the dense-dilute interface layer.

Utilizing these observations, we assigned the product of align-
ment and number density, α(r)n(r) (the integrand of the true
pressure, see eq. 26 in paper) as a function of distance from the
cluster’s center of mass, r = ||r||, to be our metric of interest for
identifying the interface. Knowing that the maximum alignment
must be within the interface of finite width, h, by our definition,
we first found the radial location, rmax, of the maximum of the
pressure integrand, max(α(r)n(r)), which approximately corre-
sponded to the location of peak alignment, αmax.

With rmax identified, we then defined limits for the magnitude

and slope of the pressure integrand to find the continuous region
which satisfies these conditions, or the interface. To easily do this,
we takes radial steps from rmax either inwards towards the clus-
ter’s center of mass or outwards towards the cluster edge to iden-
tify the start of the interface (rc−h) and the end of the interface
(rc) respectively. At each radial step, we measure whether that
position satisfies either of two criteria. If it does, then it is con-
sidered part of the interface. However, if it is the first radial step
in either direction which does not, it is labelled as an interface
boundary, making all radial points between these two boundaries
the interface.

Now, we will define those limits. First, we see that the mag-
nitude of the pressure integrand within the interface region must
be discernibly greater than the noise levels in our measurements,
giving us the condition: α(r)n(r) ≥ 0.2max[α(r)n(r)]. However,
with only this definition and despite the data being smoothed
and averaged over three neighboring positions, noise peaks can
similarly make our interface seem wider than it is due to our rel-
atively sparse radial measurement, ∆r = 3.0. Therefore, we also
note the pressure integrand must also be sharply changing be-
tween αmax and either α(rc − h) or α(rc) with maximum mag-
nitude slopes in either the inward or outward directions located
at rc− h < rin < rmax and rmax < rout < rc respectively. We move
radially inward or outward from rin and rout respectively, check-
ing whether each radial position satisfies our second criterion:
| d

dr [α(r)φ(r)]| ≥ 0.2max(| d
dr [α(r)n(r)]|). Upon the first radial step

in either direction failing to satisfy both criteria, that position is
labelled as an interface boundary and we can simply take the dif-
ference to measure our interface width, h.

Though generally resembling a circular structure, the clusters’
shapes evolved temporally and spatially due to the particles’ dy-
namic nature, complicating radial measurements that assume the
cluster is circular. Similar to the cluster radius fluctuating with
angle from the center of mass, so too does the interface structure.
Breaking of local symmetry results in varying sites of sources and
sinks of particles across the interface that either adsorb or des-
orb particles respectively6, resulting in a dynamic interface width
that varies for each conical surface. Due to the dissimilar clus-
ter radii and interface structure in any direction, we performed
radial measurements over twenty conical surfaces at every time
step, where all particles within each specified 18◦ range from the
center of mass were radially binned and their average alignment
(fig. 5a-c) and local area fraction,φ̄local, (fig. 5d-f) were mea-
sured as a function of distance from the cluster’s center of mass.
Though this measurement can be performed without discernment
of the angle around the cluster’s center of mass, it considerably
blurs the interface and induces much greater inaccuracy for softer
and less stable systems.

In order to accurately average the radial measurements of each
conical surface at steady state (fig. 5), we normalized the dis-
tance from the center of mass by the measured cluster radius for
each conical surface (||r||/rc). We obtained accurate local area
fraction (fig. 5a, d, g) and orientational alignment (fig. 5b, e, h)
at each normalized radii, demonstrating strong agreement with
our analytical calculations for the area fraction (φtheory, see eq. 8
in paper) and interparticle pressure (ΠP

theory, see eq. 17 in paper)
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within the bulk dense phase. When the interface location is calcu-
lated using this method, the start and end of the interface approx-
imately corresponded to where the local area fraction equals the
analytical area fraction of the dense and gas phase respectively
(fig. 5a-c). Calculating the beginning and end of the dense-dilute
interface via this method determined the interface width, h, in
our simulations when averaged over all conical surfaces and time
at steady state (see SI, fig. S12).

5 Computing the surface tension of soft
ABPs

Force balance dictates that the jump in force per unit area (trac-
tion) across the interface must balance against the force induced
by the interface itself. Assuming that the interfacial forces are
entirely due to surface tension, the equation describing this force
balance reduces to

∆F̂I = 2γκmn̂+(I− n̂n̂) ·∇γ, (13)

where ∆F̂I = F̂d − F̂g is the jump in force per unit area across
the interface, n̂ is the normal unit vector of the surface point-
ing outwards that is separating the dense and dilute phases, γ

is the surface tension and κm = 1/rc is the mean curvature of the
interface. The first and second terms on the right hand side repre-
sents the force jumps along the normal and tangential directions
of the surface, respectively. Note that the tangential component
becomes negligible, compared to the normal direction, in our sys-
tem. Substituting (I− n̂n̂) ·∇γ ≈ 0 gives us

F̂d− F̂g = 2γκmn̂, (14)

Since all forces are acting in either direction normal to the sur-
face, we re-write the coexistence criterion in terms of scalars:

F̂d− F̂g = 2γκm, (15)

As this equation represents units of force per unit area (or pres-
sure), re-write the equation to find the surface tension, γ in terms
of measurable quantities:

(
Πd−Πg

) rc

2
= γ, (16)

where Πg and Πd are the gas and dense phase pressures re-
spectively and rc = κ−1

m is the cluster radius. Substituting rc =(√√
3

2π

)√
Na, and ΠP

d = 4
√

3Fa

a while approximating Πg ≈ 0, we

obtain:

γactive = 4

√
3
√

3
2π

√
NFa, (17)

which is linearly increasing with the simulation box size (
√

n),
contrary to the mechanical definition of surface tension which
should apply to any system. Therefore, there must be a flaw in our
initial momentum equation (eq. 17), which was our treatment of
the aligned interface as the surface tension and not as a body
force density.

6 Determining the dependence of surface
tension on softness, area fraction, and ac-
tivity

So far, we have discussed how the interparticle separation, area
fraction, radius, and pressure of the dense phase depend on the
independent variables of our system: softness (ε), area fraction
(φ), and activity (Pe). Now, we seek to extend this analysis to
our calculation of the normalized surface tension, (2γ)/(Πdrc),
through the use of multivariate linear regression. Suppose we
have a linear regression model such that our dependent variable,
y, can be represented by a linear combination of independent vari-
ables (xi)7:

y = y1,2,...,p + e1,2,...,p (18)

where y1,2,...,p = β0 +β1x1 +β2x2 + ...+βpxp is the part of our de-
pendent variable, y, explained by our p independent variables (x1,
x2, ..., xp) with corresponding proportionality constants (β1, β2,
..., βp). e1,2,...,p is the part of y that cannot be unexplained by
our linear regression model. We may judge how accurate our re-
gression equation is at predicting y by correlating y and x1,2,...,p.
We estimate the proportionality constants, βi by the method of
least squares such that we obtain the best linearly fitted model
for our data: ŷ ≡ ŷ1,2,...,p. By definition, the multiple correlation
coefficient of y on x1, x2, ..., xp is:

r = r0;1,2,...p = corr(y, ŷ) (19)

where the function corr(y, ŷ) represents the correlation coefficient,
r, of y on ŷ. The correlation coefficient of any two scalars, y on x,
is defined to be:

corr(y,x) = r =
∑

n
i=1(yi− ȳ)(xi− x̄)√

∑
n
i=1(yi− ȳ)∑

n
i=1(xi− x̄)

(20)

where n is the sample size and x̄ and ȳ are the sample means of x
and y respectively.

Clearly, as we increase the number of independent variables,
p, the number of unique correlation coefficients quickly becomes
large, scaling with p(p+ 1)/2. We account for these through the
correlation matrix, R(p+1)×(p+1), whose elements correspond to
the Pearson correlation coefficients (eq. 20 for each possible pair-
ing of variables, R = (ri,j)0≤i,j≤p where:

ri,j =


corr(y,xj) if i = 0,

1 if i = j,

corr(xi,xj) otherwise

(21)

such that8:

R(p+1)×(p+1) =


1 r0,1 r0,2 . . . r0,p

r0,1 1 r1,2 . . . r1,p

r0,2 r1,2 1 . . . r2,p
...

...
...

. . .
...

r0,p r1,p r2,p . . . 1

 (22)

It can be proven that9:
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rm =

√
1− |R|

r0,0|ri,j|p−1
(23)

where rm is the multiple correlation coefficient, |R| is the deter-
minant of the correlation matrix, and r0,0|ri,j|1≤i,j≤p corresponds
to the cofactor of the (0,0)th element of R. In this case, r0,0 = 1
and |ri,j|1≤i,j≤p is the determinant of correlations for x1,x2, ...,xp

only.
Now, consider the correlation matrix of our system with vari-

ables ((2γ)/(Πdrc), ε, φ , Pe), henceforth corresponding to (y, x1,
x2, x3) respectively and simplifying our linear regression to:

y1,2,3 = β0 +β1x1 +β2x2 +β3x3 (24)

Upon performing a multivariate linear regression (eq. 24) to our
simulation data, our correlation matrix becomes:

R4×4 =


1.000 −0.383 0.036 −0.095
−0.383 1.000 −0.081 −0.065
0.036 −0.081 1.000 0.014
−0.095 −0.065 0.014 1.000

 (25)

Applying eq. 23 to our simulation data (eq. 25), we find rm =

0.402 and r2
m = 0.161. Though this r2

m already shows a relatively
poor dependence of surface tension on softness, area fraction, and
activity, the coefficient of determination will always increase as
we incorporate more independent variables into our multivariate
linear regression. Therefore, we calculate the adjusted coefficient
of determination to punish a greater number of poorly chosen
independent variables10:

r2
m,adj = 1−

[
(1− r2

m)(n−1)
n−p−1

]
(26)

where n is the sample size and p is the number of indepen-
dent variables. Upon applying eq. 26 to our results from eq. 23
(r2

m = 0.161), we find r2
m,adj = 0.135 where rm,ad� 1, confirming

that softness, area fraction, and activity are poor predictors of the
normalized surface tension.
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S 1 Radial density function (RDF) for three systems of constant system area fraction (φ = 0.55) and activity (Pe = 200) with varying softness (see
legend, ε = 100, 10−3, and 10−4 kBT ). For each softness, two simulations were ran with either a large (dotted line) or small (solid line) initially seeded
clusters (discussed in detail in the SI, see section §3). For all simulations, RDF is measured for a single time step at τr = 300. At τ = 100, the two
hardest systems (ε = 100 and 10−3 kBT ) had maintained steady state for τ ≥ 50τr; whereas, the softest system (ε = 10−4 kBT ) never underwent MIPS
in either case. We conclude that seeding size has a negligible impact on whether MIPS occurs and, if it does occur, the resulting phase-separated
lattice structure.

S 2 Cluster fraction (Nd/N) over time (τ = 100) for three systems of constant system area fraction (φ = 0.55) and activity (Pe = 200) with varying
softness (see legend, ε = 100, 10−3, and 10−4 kBT ). For each softness, two simulations were ran with either a large (dotted line) or small (solid line)
initially seeded clusters (discussed in detail in the SI, see section §3). At τ = 100, the two hardest systems (ε = 100 and 10−3 kBT ) had maintained
steady state for τ ≥ 50τr; whereas, the softest system (ε = 10−4 kBT ) never underwent MIPS in either case. We conclude that seeding size has a
negligible impact on whether MIPS occurs and, if it does occur, the resulting steady state cluster size.
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S 3 The number of particles participating in the dense phase cluster(s) over time (τ = 100) with an initially seeded cluster with starting area equal
to 1

4 of the predicted steady-state size. Activity (Pe) is allowed to vary while system size (N = 105), area fraction (φ = 0.65), and softness (ε = 1.0)
are held constant. Activity has a large influence on dense phase size up until Pe ≥ 250 where the increase in dense phase size as activity increases is
marginal. As activity increases, the system more quickly reaches its steady state. The coefficient of variation (Cv = σ/µ, where σ is the standard
deviation and µ is the mean of the dense phase size) calculated for each system over its steady state frames. For all systems, one standard deviation
corresponds to a fluctuation of less than 4% of the mean steady-state cluster size. As activity increases, the system more quickly reaches its steady
state and the degree of fluctuations in system size is greatly reduced. Fluctuations in dense phase size become approximately constant at Pe≥ 200 in
our high activity regime.

S 4 The number of particles participating in the dense phase cluster(s) over time (τ = 100) with an initially seeded cluster with starting area equal
to 1

4 of the predicted steady-state size. Softness (ε) is allowed to vary while system size (N = 105), area fraction (φ = 0.65), and activity (Pe = 350)
are held constant. As softness increases, particles can compress more easily resulting in a smaller cluster area and, in turn, greater rate of desorption
from the cluster (eq. 10 in the paper). In all systems, the system quickly reaches steady state by τ ≈ 25 and maintains steady state for the remaining
simulation time. The coefficient of variation (Cv = σ/µ, where σ is the standard deviation and µ is the mean of the dense phase size) calculated for
each system over its steady state frames. For all systems, one standard deviation corresponds to a fluctuation of less than 2% of the mean steady-state
cluster size. As particles become softer, the size of the cluster is more prone to fluctuations via avalanche events.
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S 5 The number of particles participating in the dense phase cluster(s) over time (τ = 100 for N = 1.05 and τ = 200 otherwise) with an initially seeded
cluster with starting area equal to 1

4 of the predicted steady-state size. System size (N) is allowed to vary while softness (ε = 1.0), area fraction
(φ = 0.65), and activity (Pe = 350) are held constant. In all systems, the system quickly reaches steady state by τ ≈ 25 and maintains steady state for
the remaining simulation time. The steady-state dense phase size scales with the system size. The coefficient of variation (Cv = σ/µ, where σ is the
standard deviation and µ is the mean of the dense phase size) calculated for each system over its steady state frames. For all systems, one standard
deviation corresponds to a fluctuation of less than 1% of the mean steady-state cluster size. At N > 0.6×105, system fluctuations become independent
of system size.
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S 6 The number of particles participating in the dense phase cluster(s) over time (τ = 100) with an initially seeded cluster with starting area equal to
1
4 of the predicted steady-state size. Area fraction (φ) is allowed to vary while system size (N = 1.0×105), softness (ε = 1.0), and activity (Pe = 200)
are held constant. Since the area fraction is independent of phi, the additional particles participating in the dense phase simply increase the area of the
cluster without influencing the density. In all systems, the system quickly reaches steady state by τ ≈ 25 and maintains steady state for the remaining
simulation time. The coefficient of variation (Cv = σ/µ, where σ is the standard deviation and µ is the mean of the dense phase size) calculated for
each system over its steady state frames. For all systems, one standard deviation corresponds to a fluctuation of less than 1% of the mean steady-state
cluster size. Fluctuations among different φ are comparable in magnitude.
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S 7 The amplitude (Rn =
√

a2
n +b2

n where an and bn are the real and imaginary components of the n-th Fourier mode’s amplitude) of the Fourier modes
(n) calculated over the system’s steady state and normalized by the lowest wavelength mode, R0 = rc where rc is the cluster radius. The average
radius of the cluster’s surface was measured in dθ = π/24 increments and fit to a Fourier series to quantify the degree of surface fluctuations via the
Fourier mode amplitudes11. Activity (Pe) is allowed to vary while system size (N = 1.0×105), softness (ε = 1.0), and area fraction (φ = 0.65) are held
constant. We see that n = 0 is the dominant mode for all activities. As activity increases from Pe = 50 to Pe = 150, the higher wavelength modes
(n > 0) play a significantly decreasing role in the interface stability and, in turn, activity promotes greater stability in the cluster shape. For Pe≥ 150,
the second highest mode is at least one order of magnitude smaller than R0 and increasing activity further plays a negligible role in improving surface
stability.
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S 8 The amplitude (Rn =
√

a2
n +b2

n where an and bn are the real and imaginary components of the n-th Fourier mode’s amplitude) of the Fourier modes
(n) calculated over the system’s steady state and normalized by the lowest wavelength mode, R0 = rc where rc is the cluster radius. The average
radius of the cluster’s surface was measured in dθ = π/24 increments and fit to a Fourier series to quantify the degree of surface fluctuations via the
Fourier mode amplitudes11. Softness (ε) is allowed to vary while system size (N = 1.0×105), activity (Pe = 350), and area fraction (φ = 0.65) are held
constant. We see that n = 0 is the dominant mode for all softnesses. In addition, we see that softness plays a relatively negligible role in changing the
surface stability. For all softnesses, the second highest mode is at least one order of magnitude smaller than R0.
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S 9 The amplitude (Rn =
√

a2
n +b2

n where an and bn are the real and imaginary components of the n-th Fourier mode’s amplitude) of the Fourier modes
(n) calculated over the system’s steady state and normalized by the lowest wavelength mode, R0 = rc where rc is the cluster radius. The average radius
of the cluster’s surface was measured in dθ = π/24 increments and fit to a Fourier series to quantify the degree of surface fluctuations via the Fourier
mode amplitudes11. System size (N) is allowed to vary while softness (ε = 1.0), activity (Pe = 350), and area fraction (φ = 0.65) are held constant.
We see that n = 0 is the dominant mode for all system sizes. In addition, we see that system size plays a relatively negligible role in changing the
surface stability. For all system sizes, the second highest mode is at least one order of magnitude smaller than R0.

S 10 The amplitude (Rn =
√

a2
n +b2

n where an and bn are the real and imaginary components of the n-th Fourier mode’s amplitude) of the Fourier
modes (n) calculated over the system’s steady state and normalized by the lowest wavelength mode, R0 = rc where rc is the cluster radius. The
average radius of the cluster’s surface was measured in dθ = π/24 increments and fit to a Fourier series to quantify the degree of surface fluctuations
via the Fourier mode amplitudes11. Area fraction (φ) is allowed to vary while softness (ε = 1.0), activity (Pe = 200), and system size (N = 1.0×105)
are held constant. We see that n = 0 is the dominant mode for all system sizes. In addition, we see that area fraction plays a relatively negligible role
in changing the surface stability. For all system sizes, the second highest mode is at least one order of magnitude smaller than R0.
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S 11 (a) Analytically computed cluster radius from eq. 15 in paper at total system area fraction of φ = 0.45 with simulations at various softness
(color). (b) Analytically computed cluster radius from eq. 15 at total system area fraction of φ = 0.55 with simulations at various softness (color). As
we reduce the area fraction, We see fewer systems that undergo MIPS in the simulations we ran, resulting in data being sparse namely for ε = 10−3

kBT (orange diamonds) and ε = 10−4 kBT (brown triangles).
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S 12 (a) Interface width calculated via the discrete approach (h) as discussed in detail in the SI, see section §3. The interface width, h, is approximately
independent of activity (Pe) and area fraction (φ) with a weak dependence on stiffness (ε) despite being approximately within noise levels (∆r = 3.0).
(b) When considering the dimensionless interface thickness (h/a), the interface width consists of more particles for both more active systems at
constant particle stiffness and softer particle systems at constant activity.
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S 13 (a) Interface width calculated calculated via the discrete approach (h), as discussed in detail in the SI, see section §3, vs the activity (Pe) for
various simulation box sizes (

√
N) where N = 105 is the standard system size for all other results presented in this paper. The area fraction (φ = 0.65)

and softnesss (ε = 1.0) are both held constant. The interface width is approximately constant at each activity for all simulation sizes with the variance
in interface width being within noise levels as the step size for radial measurements is ∆r = 3.0.(b) When considering the dimensionless interface
thickness (h/a), the interface width consists of more particles for both more active systems at constant particle stiffness and softer particle systems at
constant activity.
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S 14 The non-dimensional surface tension, (2γtrue)/(Πdrc) calculated via the continuum approach using values for n(x), α(x), rc (Fig. 5b), and Πd
(Hollow circles from Fig. 8 calculated via the virial formulation, eq. 16 in the paper) from simulation at φ = 0.65 and ε = 1.0 for four different systems
sizes. N = 1x105 is the standard system utilized for all other results presented in this paper. At all activities, γtrue remains approximately constant
around zero with a slight bias in the negative direction. The inset shows the surface tension averaged over the system size (N) at each activity with
error bars corresponding to a single standard deviation. In the inset, all surface tension measurements (colored) are fitted (dashed line) such that we
do not bias low activity where fewer systems undergo MIPS. The line of best fit is found to be approximately constant, slightly negative, and near
zero while being encompassed in the standard deviation at most activities.

S 15 The maximum particle alignment (αmax) with the cluster’s center of mass, occurring within the bulk-gas interface. The alignment is found to
be independent of both area fraction (φ) and softness (ε) in addition to being roughly independent of activity (Pe) at high activities (Pe > 150). The
inset shows the maximum alignment averaged over φ and ε at each activity with error bars corresponding to a single standard deviation. For our
calculation of the interface width (eq. 27 in paper), the average maximum alignment is chosen to be a constant corresponding to αmax = 0.45, which
is the average maximum alignment at high activities (Pe > 150).
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S 16 (a) Interface width calculated via the continuum approach (hcont) with eq. 27 in paper. The interface width, hcont, is approximately independent
of activity (Pe) and area fraction (φ) with a weak dependence on stiffness (ε) despite being approximately within noise levels (∆r = 3.0), which is in
agreement with that seen in the interface width measured via the discrete approach, h (fig. S12). (b) When considering the dimensionless interface
thickness (h/a), the interface width consists of more particles for both more active systems at constant particle stiffness and softer particle systems at
constant activity.

16 | 1–18Journal Name, [year], [vol.],



S 17 The integral, I =
(∫ 1

0 φ̃(x̃)α̃(x̃)dx̃
)−1

, as a function of activity (Pe with varying softness (color) and area fraction (hatching). I is found to be
approximately constant at high activities (Pe > 150) where I is chosen to be I= 3.0 for calculations of the interface width via the continuum approach,
see eq. 27 in paper.

Journal Name, [year], [vol.],1–18 | 17



S 18 (a) Interface width calculated via the continuum approach (hcont) with Eq. 27 in paper vs the activity (Pe) for various simulation box sizes (
√

N)
where N = 105 is the standard system size for all other results presented in this paper. The area fraction (φ = 0.65) and softnesss (ε = 1.0) are both
held constant. The interface width is approximately constant at each activity for all system sizes with the variance in interface width being within
noise levels as the step size for radial measurements is ∆r = 3.0.(b) When considering the dimensionless interface thickness (hcont/a), the interface
width consists of more particles for both more active systems at constant particle stiffness and softer particle systems at constant activity.
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