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Supplementary Figure 1. Velocity temporal correlation functions Ct of pear-shaped rollers for a set of field strengths. Ct is
defined as Ct(τ) = N−1 ∑

i 〈vi(t) · vi(t+ τ)〉t/〈v
2
i (t)〉t, where vi(t) is the velocity of a roller i at the moment t; N is the total

number of rollers; and 〈 〉t indicates time average. The persistence time τp is defined as the time when Ct decays to 1/e. The
area fraction φ = 0.144.
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Supplementary Figure 2. Rolling velocity of the pear-shaped particles as a function of the electric field strength E of samples
with two different area fractions. The area fractions are 0.001 and 0.144 for red circles and blue squares, respectively. The
red dash line is a fit of the high field part of the red curve to |v| ∼

√
(E/Ec)2 − 1 dependence typical for spherical rollers.

Ec = 1.96 V µm−1. Shaded area is a crossover region (β) between two different modes (α, γ) of particles rolling. Error bars
are standard deviation of the absolute values of velocities.
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Supplementary Figure 3. Phase diagram of spherical Quincke random walkers. Multiple vortices are shown within limited
range where 2 . τT/τMW . 4.
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Supplementary Figure 4. Velocity spatial correlation functions of pear-shaped rollers. The velocity spatial correlation function
Dv is defined as Cs(r) = 〈〈vi(r0, t) · vj(r0 + r, t)〉i,j〉t/〈〈v2

i (r0, t)〉i〉t, where vi(r0, t) and vj(r0 + r, t) are velocities of roller i
and j with a relative distance r at a time t; 〈 〉i is an ensemble average; and 〈 〉t is the time average. The vortex size Dv is
defined as a second zero crossing in the spatial correlation curve Cs. Insert: Vortex size, Dv, as a function of the field strength
E. The area fraction φ = 0.144.
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Supplementary Figure 5. Persistence index of spherical Quincke random walkers under different the polarization memory. The
red line is a fitting curve using Supplementary Eq (2). The gray dash lines are guide lines.
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SUPPLEMENTARY NOTE 1

Persistence length for Quincke Random-Walkers

Shown in Supplementary Figure 3 is the phase diagram which summarizes the range of existence of different
phases. For τT/τMW < 2, particles keep full memory of their direction of motion and eventually form a giant single
vortex, similar to the one previously reported for persistently running particles in the DC limit, i.e. τT/τMW → 0
[1]. Therefore, although particles are continuously running in the DC-driven case while they periodically do runs
punctuated by full stop during τT period in the modulated AC cases, as long as the polarization of particles is fully
retained, they both result in equivalent individual and collective behaviors. On the other end of the spectrum, when
particles’ polarization is fully reset at τT period of the signal, i.e. τT/τMW > 4, particles perform random motion
without forming any coherent structures.

For the intermediate values of 2 . τT/τMW . 4, particles partially keep the memory of their direction of motion.
Upon applying the pulsed-modulated field, neighboring particles interact locally and form small vortices. However,
due to the lack of full memory, before the neighboring vortices find time to merge and form larger ones, the particles
forget their memory and as a result, they form pinned vortices.

For given τR and τT values, as the activity level (i.e. velocity) increases by the field magnitude, neighboring particles
interact to larger distances and consequently the average number of pinned vortices that form in the field of view
decreases. In order to fully characterize the role of relevant kinematic parameters on the structure of the vortex
lattice, we recast the parameters in terms of the kinematic persistence length scale Lp = 〈|v|〉 · τp, where 〈|v|〉 and τp
are the mean velocity and the persistence time of the particles. In a correlated random-walk, the persistence time τp
can be calculated from the corresponding Mean-Squared Displacement MSD as [2, 3]:

τp = τR(1 + 2
α

1− α
), (1)

where 0 ≤ α = 〈cos(θ)〉 ≤ 1 is the persistence index, which quantifies the degree of memory in the correlated run. 〈...〉
is the average over all turning events and θ is the change in the direction of motion between two consecutive runs.
In the context of Quincke random walkers, it has been shown that the persistence index α is controlled through the
degree of polarization/depolarization of the particles, i.e. τT/τMW [4]. The functional form can be well approximated
by an inverted logistic function (Supplementary Figure 5):

α =
1

1 + ek(τT/τMW−x0)
, (2)

where x0 is the sigmoid’s midpoint and k controls the growth/decay rate of the curve. Our previous experimental
measurements [4] suggest that k = 3 and x0 = 2.68 can well capture the measured persistence index. Combining Eqs.
2 and 1 with the mean velocity vm gives the functional form of the kinematic persistence length Lp for a given degree
of depolarization τT/τMW:

Lp = 〈|v|〉τR(1 +
2

ek(τT/τMW−x0)
). (3)

For a fully uncorrelated runs, i.e. τT/τMW � x0, persistence index α approaches zero and Lp = 〈|v|〉 · τR. However,
in fully correlated runs, i.e. τT/τMW � x0, persistence index α is one and kinematic persistence length scale of the
particles Lp → ∞. In other words, in a bounded domain, persistent (in DC driven) and fully correlated runners
(in pulse-modulated case) can explore the corresponding characteristic length scale of the domain, leading to the
formation of a giant single vortex.

As Eq. 3 suggests, the kinematic length can be set separately with the activity level via changing the applied field
magnitude, run time τR, and degree of depolarization τT/τMW.
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