Supporting Information

Block-copolymer-like self-assembly behavior of mobile-ligand grafted ultra-small nanoparticles

Feng-Rui Xu†§, Rui Shi†§, Xiang-Meng Jia†§, Sheng-Chao Chai§, Hao-Long Li§, Hu-Jun Qian*†§, and Zhong-Yuan Lu†§

†Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130022, China
§State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.

*Corresponding author. E-mail: hjqian@jlu.edu.cn
Figure S1. Phase boundary diagrams of POM-5PS with different graft chain length. Regions for different phases are shown in different colors as indicated by the legends.

Figure S2. Phase boundary diagrams of POM-6PS with different graft chain length. Regions for different phases are shown in different colors as indicated by the legends.
Figure S3. Phase boundary diagrams of POM-3PS with different graft chain length. Regions for different phases are shown in different colors as indicated by the legends.
Figure S4. (a) Inverse cylinder structure formed by POM-2PS₅; (b) and (c) two typical configurations of grafted polymers: (b) two PS chains are in the same cylinder, and (c) two PS chains are in two distinct cylinders.

Figure S5. 3D plot of the calculated packing parameter P for systems with varied graft chain length N and graft density n. The pictures on the left show typical molecular conformation of PS grafted POM NP. The P value is shown in different colors as indicated by the color bars on the right.
Figure S6. Transformation of a lamellae structure formed at 440 K for system POSS-4PS\textsubscript{13} to a cylinder structure when it is heated up to 600 K.