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POTENTIAL SYSTEMS

Fast-Diverging Potentials:

• Lennard Jones 6-12 (LJ)
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Lennard Jones is the classical potential used when
simulating simple systems. It encapsulates two key
effects, hard-sphere repulsion and long range Van
der Waals attraction.

We study systems with ε ∈ {0.65, 0.6, 0.55, 0.5},
and σ = 1.

• Morse
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The Morse potential is qualitatively similar to LJ
but allows slightly more freedom to tune the shape
of the minimum. It is often used to model the inter-
atomic interactions inside diatomic molecules such
as N2.

We study systems with ε ∈ {0.65, 0.6, 0.55}, α ∈
{5, 9}, and rmin = 1.

• Generalised Pseudo-Hard-Sphere

The Mei Potential is a generalised form of LJ that
offers more freedom to tune the shape of the poten-
tial.
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where ψ = λr

λr−λa
.

The Weeks-Chandler-Andersen (WCA) potential
[1] is defined by truncating and shifting the LJ po-
tential at its minimum, the resulting potential is
purely repulsive. We have constructed the equiva-
lent to WCA for the generalised Mei potential al-
lowing us to test purely repulsive behaviour for a
variety of exponents.
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− φMei(rc) (5)

This form can be used to mimic the discontinuous
potential of an idealised hard-sphere system [2].

We study systems with ε ∈ {1.0, 0.6}, (λr, λa) ∈{
(12, 6), (50, 49)

}
, and σ = 1.

• DLVO-type potentials
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These two potentials are invented potentials de-
signed to try and mimic the secondary stable min-
imum seen in DLVO theory.

For (6) we study a system with εh ∈ {3, 5, 7}, εw =
1, κ ∈ {10, 20, 30}, δ = 0.3, and σ = 1.

For (7) we study systems with ε = 1, α ∈
{0.185, 0.2, 0.215, 0.23, 0.245}, and σ = 1.

Step-Diverging Potentials:

• Smooth Step Potential
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Current closure relationships are known to fail for
systems with features over multiple length scales
making the smooth step a good choice of training
system is we want to extend the generalisability of
our inferred closure.

We study systems with εh = 1, εs = 1, κ ∈
{1, 3, 5, 7}, δ ∈ {1, 1.5, 2}, and σ = 1.
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• Continuous Shouldered Well (CSW)
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The CSW model is a core-softened model in the
same manner as the smooth step but it has also
been shown to recreate physical anomalies seen ex-
perimentally in fluids such as water [3].

We study systems with εh = 1, εs = 2, κ ∈
{2.5, 7.5}, δs ∈ {1.2, 1.6}, εw = 1, δg = 2.0,
χ ∈ {0.1, 0.2}, and σ = 1.

• Repulsive Shoulder System Attractive Well (RS-
SAW)
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The RSSAW model is similar to the CSW model
and exhibits the same complex behaviour [4]. Po-
tentials of this form have been reported for col-
loidal particles and polymer-colloid mixtures mak-
ing them important for the study of soft matter
systems.

We study systems with εh = 1, λ1 = 0.5, λ2 =
0.3, κ1 = 10, κ2 = 10, σ1 ∈ {0.8, 1.15, 1.5}, σ2 ∈
{1, 1.35}, and σ = 1.

Slow-Diverging Potentials:

• Soft-Sphere
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The soft-sphere potential is purely repulsive but al-
lows for more interpenetration than other repulsive
models.

We study systems with ε ∈ {1, 6}, n ∈ {4, 6, 8, 10},
and σ = 1.

• Yukawa
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The Yukawa potential is a screened coulomb poten-
tial that is used to represent the effect of charges
in ionic solutions.

We study systems with ε ∈ {2, 4, 6}, κ ∈ {2.5, 3.5},
and δ = 0.8.

Core-Overlapping Potentials:

• Hertzian
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The Hertzian potential effectively describes the in-
teractions between weakly deformable bodies such
as globular micelles. Soft-core potentials are quali-
tatively different from soft-sphere potentials in far
as complete overlap is allowed.

We study systems with ε ∈ {4, 6, 8, 10} and rc ∈
{2, 3}.

• Hat
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The Hat potential a is standard conservative po-
tential often used in Dissipative Particle Dynamics
for simulating coarse grained fluids.

We study systems with Fmax ∈ {4, 6, 8, 10}, rc ∈
{2, 3}, and σ = 1.

• Gaussian
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Gaussian shaped potentials have been used as rea-
sonable approximations for the effective interac-
tion between the centres of polymer chains (Flory-
Krigbaum potential [5]).

We study systems with ε ∈ {4, 6, 8, 10} and 1/σ2 ∈
{1, 1.5, 2}.

SIMULATION DETAILS

ESPResSo is a highly flexible open-source Molecular
Dynamics package designed for the simulation of soft
matter systems. The simulation engine is written in C
and C++ but is controlled via a Python interface.

Interaction potentials were specified using regularly
spaced tabulated values, these are linearly interpolated
in the core to evaluate the forces at each time step.

For each state point investigated the density was spec-
ified and the box size was fixed at 20 σ where σ is the
scale parameter of the density which numerically we set
to 1. The number of particles under consideration was
scaled accordingly. We consider reduced densities in the
range 0.4-0.8 at increments of 0.1.

The system is integrated using the Velocity Verlet algo-
rithm [6, 7]. The resulting global errors in the velocities
and positions are O(∆t2). A time step of ∆t = 0.005 was
used in this work.
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A Langevin thermostat is used to control the sys-
tem temperature. The Langevin thermostat introduces
stochastic momentum fluctuations that both regulate the
temperature and are necessary to recreate the fluctua-
tions observed in the canonical ensemble (NVT) making
it superior to a rescaling thermostat that would suppress
such fluctuations. We opt to set the temperature of the
thermostat to 1/Kb and adjust energy scales in the pa-
rameterisations of the potentials.

To minimise the chances of a quasi-stable solid phase
forming particle positions are randomly initialised to en-
sure a low symmetry starting arrangement. At the start
of each simulation run a static energy minimisation is
performed via gradient descent without the thermostat
to remove any overlaps present between hard-sphere po-
tentials. Warm-up runs were then carried out with the
thermostat to allow the system to equilibrate. Equilib-
rium was taken to be the point at which the kinetic tem-
perature over a short windowing period is consistent with
the reference temperature of the thermostat.

For computational efficiency the potentials used are
truncated at rcut = 3σ. The potentials have also been ad-
justed to fix the potential and force at the cut-off. Often
this treated with caution as it introduces systematic er-
rors when measuring the thermodynamic properties of a
reference system. However, as the structural correlation
functions are causally determined by Newton’s laws their
validity is unaffected by adjusting the potential. Verlet
lists are used to efficiently handle the truncation of the
potential. A skin length of 0.2 times the cut-off length
was chosen in line with common practice [8].

The radial distribution function and structure factor
were measured from the simulation. To get the structure
factor in a timely manner we only take measurements
along {100} type directions within the system such that
evaluating S(q) is O(N) in the number of particles. The
default approach that evaluates S(q) for every valid grid

point scales as O(N3).
In total for each state point 1024 samples were taken

at intervals of 16 time steps. The variances were handled
using the Flyjberg-Peterson blocking approach [9].
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[3] Miha Lukšič, Barbara Hribar-Lee, and Orest Pizio. Phase
behaviour of a continuous shouldered well model fluid. a
grand canonical monte carlo study. Journal of molecular
liquids, 228:4–10, 2017.

[4] Yu D Fomin, EN Tsiok, and VN Ryzhov. Complex phase
behavior of the system of particles with smooth potential
with repulsive shoulder and attractive well. The Journal
of chemical physics, 134(4):044523, 2011.

[5] P. J. Flory and W. R. Krigbaum. Statistical mechanics
of dilute polymer solutions. ii. The Journal of Chemical
Physics, 18(8):1086–1094, 1950.

[6] Loup Verlet. Computer ”experiments” on classical fluids.
i. thermodynamical properties of lennard-jones molecules.
Phys. Rev., 159:98–103, 1967.

[7] William C. Swope, Hans C. Andersen, Peter H. Berens,
and Kent R. Wilson. A computer simulation method for
the calculation of equilibrium constants for the formation
of physical clusters of molecules: Application to small wa-
ter clusters. The Journal of Chemical Physics, 76(1):637–
649, 1982.

[8] Daan Frenkel and Berend Smit. Understanding Molecular
Simulation. Academic Press, Inc., 2001.

[9] Henrik Flyvbjerg and Henrik Gordon Petersen. Error es-
timates on averages of correlated data. The Journal of
Chemical Physics, 91(1):461–466, 1989.


