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A. Detailed derivation of the model

(a) Superwetting

(c) Peak Contact Angle

(b) Superwetting
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FIG. 1. Schematic pictures of droplet with (a) single volatile component, (b) single nonvolatile

component, and (c) mixture of the two components. Both of the two components are super-wetting

on the substrate, and the surface tension of the volatile component is larger than the nonvolatile

one. The nonuniform evaporation of the binary droplet in (c) causes an inward surface tension

gradient, which induces a peak contact angle θpk during evaporation.

Consider a droplet placed on a substrate which is a solution made of volatile component

A and non-volatile component B, as shown in Fig. 1. We assume that the droplet contact

angle is small and that the surface profile is approximated by a parabolic function

h(r, t) = H(t)

[
1− r2

R2(t)

]
, (A.1)

where H(t) is the height at the droplet center and R(t) is the radius of the droplet base.

Then, the droplet volume V (t) is given by

V (t) =
π

2
H(t)R2(t). (A.2)

The contact angle θ(t) is given by −∂h(r, t)/∂r at r = R(t). Eqs. (A.1) and (A.2) then give

θ(t) =
4V (t)

πR3(t)
. (A.3)
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Let J(r) be the evaporation rate (the liquid volume evaporating to air per unit time per
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FIG. 2. Schematic of the height averaged fluid velocity vf (r) and the fluid velocity at the liq-

uid/vapor interface vs(r) (side view). The fluid flow velocity is u(r, z), the radius of the contact

line is R, the height of the droplet at the center is H, the contact angle is θ, and the profile of the

droplet liquid-vapor interface is h(r).

unit surface area) at point r. The volume change rate is related to J as

V̇ (t) = −
∫ R

0

2πrJdr. (A.4)

We assume the evaporation rate of the nonvolatile component B equals to zero, and the

evaporation rate of the binary droplet on a substrate is proportional to the concentration of

the volatile component A, which is given by the following form [1–3]

J(r) = JA [C(r)−RH] , (A.5)

where C(r) is the height-averaged mass fraction of the volatile component in the droplet,

RH is the relative humidity of A component, and JA is the evaporation rate of pure droplet

having the same volume and base radius of the solution droplet when RH = 0. Here we

reduced our problems to the ideal case of Raoult’s law. The explicit form of JA is written

by [1, 4, 5]

JA =
θ0R

2
0

4Rτev
, (A.6)

where τev = −V0/V̇0 is the characteristic evaporation time for the pure A droplet when

RH = 0 with V̇0 being a given constant, and V0, θ0 and R0 are the initial values of V (t),

θ(t) and R(t) , respectively. The liquid/vapor surface tension γ of the solution depends on

the composition in the solution. We assume a linear dependence on C(r) [2],

γ(r) = γAC +
γA
γre

(1− C) , (A.7)
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where γre = γA/γB, γA and γB are the surface tensions of pure A and B components,

respectively.

In this model, we use the Onsager principle to determine the time evolution of the contact

radius Ṙ and the contact angle θ̇ by minimizing the Rayleighian defined by [6]

R = Ḟ + Φ, (A.8)

where Ḟ is the time change rate of the free energy of the system, and Φ is the energy

dissipation function.

The change rate of free energy Ḟ has two parts: the interface free energy contribution

ḞC and the Marangoni flow contribution ḞM . We assume that the droplet size is less than

the capillary length and the droplet is nearly flat |h′| � 1, then the sum of the interfacial

energy is written as

FC =

∫ R

0

2πr
[
γ(r)

√
1 + h′2(r)− γA cos θeA

]
dr

=

∫ R

0

2πr

[
γ(r)

(
1 +

1

2
h′2(r)

)
− γA

(
1− 1

2
θ2eA

)]
dr.

(A.9)

where the surface tension γ of solution depends on the composition in the solution, and

θeA is the equilibrium contact angle for A component, γA cos θeA = γSV − γLS. Here γSV

and γLS are the surface tension of the substrate/vapor and the liquid/substrate interfaces,

respectively. Therefore, ḞC has the form

ḞC =

∫ R

0

2πr

[
γ(r)h′(r)ḣ′(r) + Ċ(r)

∂γ(r)

∂C(r)

(
1 +

h′2(r)

2

)]
dr

+2πRṘ

[
γ(R)

(
1 +

h′2(R)

2

)
− γA

(
1− 1

2
θ2eA

)]
,

(A.10)

while the Marangoni flow contribution to the change rate of free energy [7],

ḞM = −
∫ R

0

2πrvs
∂γ

∂r
dr, (A.11)

where vs is the fluid velocity at the liquid-vapor interface.

We use the lubrication approximation to calculate the dissipation function. Therefore,

the energy dissipation Φ taking place in the system is

Φ =
η

2

∫ R

0

∫ h

0

2πr

(
∂u

∂z

)2

dzdr. (A.12)
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where η is the viscosity of the fluid, and u is the fluid velocity inside the droplet as shown

in Fig. 2.

According to the lubrication theory, the general expression of the fluid velocity u as a

function of z is

u(r, z, t) =
(
Az2 +Bz + C

)
i. (A.13)

The boundary conditions of u are,

u(r, 0, t) =0,

u(r, h, t) =vs(r, t),
(A.14)

where vs(r, t) is the fluid velocity at the liquid-vapor interface. To simplify the calculation

of Φ, we define a height averaged fluid velocity as

vf (r, t) =
1

h

∫ h

0

u(r, z, t)dz. (A.15)

The definitions of vf and vs are schematically shown in Fig. 2, vf (r) is the height averaged

fluid velocity at position r. Then, u(r, z, t)becomes

u =
3 (vs − 2vf )

h2
z2 +

2 (3vf − vs)
h

z. (A.16)

Combining Eqs. (A.12) and (A.16), the energy dissipation caused by the fluid flow inside

the droplet becomes

Φ =

∫ R

0

2πr
η

2h

[
12
(
vf −

vs
2

)2
+ v2s

]
dr, (A.17)

Minimizing the Rayleighian, R = Φ + Ḟ , with respect to vs(r) leading to

vs =
3

2
vf +

h

4η

∂γ

∂r
. (A.18)

The velocity vf and the time change rate of concentration Ċ are obtained from the mass

conservation equation. The liquid volume conservation equation is written as

ḣ = −1

r

∂(rvfh)

∂r
− J. (A.19)

Since h(r, t) is given by Eq. (A.1), ḣ is expressed as a function of Ṙ and Ḣ. Therefore, by

integrating Eq. (A.19), the height averaged fluid velocity vf (r) has a form

vf = r
Ṙ

R
−
(
r

2V
+

r3

2πR4h

)
V̇ − 1

rh

∫ r

0

r′Jdr′. (A.20)
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The conservation equation for the volatile component is written as

∂(Ch)

∂t
= −1

r

∂(rvfCh)

∂r
− J, (A.21)

where we have ignore the diffusion of each component. Combining Eqs. (A.19) and (A.21),

we obtain the evolution equation of the volatile component concentration,

∂C

∂t
= −vf

∂C

∂r
− J

h
(1− C) . (A.22)

Inserting Eqs. (A.1), (A.2), (A.3), and (A.7) into Eq. (A.10), the time change rate of the

interfacial free energy ḞC becomes

ḞC =

∫ R

0

2πr3 [(γA − γB)C + γB]

(
16V

π2R8
V̇ − 64V 2

π2R9
Ṙ

)
dr − 2πRṘγA

(
1− 1

2
θ2eA

)
+

∫ R

0

2πrĊ (γA − γB)

(
1 +

r2θ2

2R2

)
dr + 2πRṘ [(γA − γB)C(R) + γB]

(
1 +

θ2

2

)
.

(A.23)

Inserting the expression of vs and vf into Eq. (A.11), ḞM is calculated as

ḞM =−
∫ R

0

3πr2 (γA − γB)
∂C

∂r

[
Ṙ

R
−
(

1

2V
+

r2

2πR4h

)
V̇ − 1

2πr2h

∫ r

0

r′Jdr′

]
dr

−
∫ R

0

πhr

2η
(γA − γB)2

(
∂C

∂r

)2

dr.

(A.24)

Moreover, inserting the expression of vs and vf into Eq. (A.17) , Φ is calculated as

Φ =

∫ R

0

πηr

h

3r2

(
Ṙ

R
− V̇

2V
− r2V̇

2πR4h
− 1

r2h

∫ r

0

r′Jdr′

)2

+
h2 (γA − γB)2

4η2

(
∂C

∂r

)2
 dr.
(A.25)

The Onsager principle states that Ṙ is determined by the condition ∂R/∂Ṙ = 0, and

R = Ḟ + Φ. Using Eq. (A.23), ∂ḞC/∂Ṙ is writing as follows,

∂ḞC

∂Ṙ
=−

∫ R

0

8πθ2r3

R3
[(γA − γB)C + γB] dr +

∫ R

0

2πr
∂Ċ

∂Ṙ
(γA − γB)

(
1 +

r2θ2

2R2

)
dr

+2πR [(γA − γB)C(R) + γB]

(
1 +

θ2

2

)
− 2πRγA

(
1− 1

2
θ2eA

)
.

(A.26)

By Eqs. (A.20) and (A.22), we have the following expression of ∂Ċ/∂Ṙ,

∂Ċ

∂Ṙ
= − r

R

∂C

∂r
. (A.27)
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Inserting Eq. (A.27) into Eq. (A.26), ∂ḞC/∂Ṙ has the form,

∂ḞC

∂Ṙ
=−

∫ R

0

8πθ2r3

R3
(γA − γB)Cdr −

∫ R

0

2πr2

R

∂C

∂r
(γA − γB)

(
1 +

r2θ2

2R2

)
dr

−2πγBθ
2R + 2πR [(γA − γB)C(R) + γB]

(
1 +

θ2

2

)
− 2πRγA

(
1− 1

2
θ2eA

)
.

(A.28)

Using integration by parts, this can be rewritten as,

∂ḞC

∂Ṙ
=

∫ R

0

4π (γA − γB)
Cr

R

(
1− r2θ2

R2

)
dr − 2πR (γA − γB)− πR

(
γBθ

2 − γAθ2eA
)
.(A.29)

Then the expression of ∂ḞM/∂Ṙ can be obtained from Eq. (A.24),

∂ḞM

∂Ṙ
=−

∫ R

0

3πr2

R
(γA − γB)

∂C

∂r
dr

=

∫ R

0

6π (γA − γB)
Cr

R
dr − 3π (γA − γB)RC(R).

(A.30)

Similarly, ∂Φ/∂Ṙ is obtained from Eq. (A.25),

∂Φ

∂Ṙ
=

∫ R

0

6πηr3

hR

(
Ṙ

R
− V̇

2V
− r2V̇

2πR4h
− 1

r2h

∫ r

0

r′Jdr′

)
dr

=

∫ R

0

6πηr3

hR

(
Ṙ

R
− V̇

2V
− r2V̇

2πR4h
+

V̇

2πr2h
+

1

r2h

∫ R

r

r′Jdr′

)
dr.

(A.31)

Inserting Eqs. (A.1), (A.5) and (A.6) into Eq. (A.31), ∂Φ/∂Ṙ is calculated as,

∂Φ

∂Ṙ
=

3π2ηαR4

2V
Ṙ +

3π2ηR5V̇

8V 2
+

3πηθ0R
2
0

2τevR2

∫ R

0

r

h2

[∫ R

r

r′ (C −RH) dr′
]
dr, (A.32)

where α = ln(R/2ε) − 1 is a parameter which is regarded as constant in the subsequent

analysis [5].

Combining Eqs. (A.8), (A.29), (A.30), and (A.32), we have the evolution equations of

the droplet

τevṘ =
(γre − 1) θV

1
3
0

3γreαkev

[∫ R

0

C
r

R2

(
2r2θ2

R2
− 5

)
dr +

θ2 − γreθ2eA
2 (γre − 1)

+
3

2
C (R) + 1

]
−RV̇ τev

4αV
− θθ0R

2
0

4αR3

∫ R

0

r

h2

[∫ R

r

r′ (C −RH) dr′
]
dr,

(A.33)

where kev = τre/τev is the evaporation rate parameter, the character relaxation time τre is

defined by τre = ηV
1
3
0 /γA.
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Since θ̇ is related to V̇ by (see Eq. (A.3)),

θ̇ = θ
V̇

V
− 3θ

Ṙ

R
. (A.34)

Eq. (A.33) gives the following time evolution equation for θ,

τevθ̇ =
(γre − 1) θ2V

1
3
0

γreαkevR

[∫ R

0

C
r

R2

(
5− 2r2θ2

R2

)
dr − θ2 − γreθ2eA

2 (γre − 1)
− 3

2
C (R)− 1

]
+
θV̇ τev
V

(
1 +

3

4α

)
+

3θ2θ0R
2
0

4αR4

∫ R

0

r

h2

[∫ R

r

r′ (C −RH) dr′
]
dr.

(A.35)

It is worth noting that when C is set to 1, Eqs. (A.33) and (A.35) reduce to the model

of single component droplet cases. When C0 = 1, Eq. (A.33) can be reduced to

τevṘ =
(γre − 1) θV

1
3
0

3γreαkev

[
θ2 − 5

2
+
θ2 − γreθ2eA
2 (γre − 1)

+
5

2

]
− RV̇ τev

4αV

−θθ0R
2
0

8αR3
(1−RH)

∫ R

0

r (R2 − r2)
h2

dr.

(A.36)

Inserting the parabolic form of h(r, t) into Eq. (A.36) and integrating the last term, we have

τevṘ =
θV

1
3
0

6αkev

(
θ2 − θ2eA

)
− RV̇ τev

4αV
− θθ0R

2
0R

16αH2
(1−RH) (α + 1) . (A.37)

The last term of Eq. (A.37) can be written as a linear function of JA by using the definition

in Eq. (A.6),

τevṘ =
θV

1
3
0

6αkev

(
θ2 − θ2eA

)
− RV̇ τev

4αV
− τevθR

2JA
4αH2

(1−RH) (α + 1) . (A.38)

Inserting Eqs. (A.4) and (A.5) into Eq. (A.38), then the last term of Eq. (A.38) can be

written as a linear function of V̇

τevṘ =
θV

1
3
0

6αkev

(
θ2 − θ2eA

)
− RV̇ τev

4αV
+

τevθV̇

4παH2
(α + 1) . (A.39)

Based on Eqs. (A.2) and (A.3), the volume of droplet can be written as, V = πH2R/θ. Then

inserting such form of V into Eq. (A.39), the equation of Ṙ(t) for a drying single-component

droplet is obtained as

τevṘ =
θV

1
3
0

6αkev

(
θ2 − θ2eA

)
+
τevRV̇

4V
, (A.40)

which is consistent with the previous evolution equation of contact radius R for evaporating

pure droplets [5]. Inserting Eq. (A.40) into (A.34), the time evolution equation of the droplet

contact angle, θ̇, for a drying single-component droplet is written as

τevθ̇ =
θ2V

1
3
0

2αkevR

(
θ2eA − θ2

)
+
τevθV̇

4V
. (A.41)
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B. Comparison with experimental results when γre < 1

Our model is also suitable for the case of γre < 1. As an extension of the paper, we discuss

the shape evolution of a drying binary droplet when γre < 1. Based on the Young’s equation,

the relationship between the equilibrium contact angle of pure A and B droplet, θeA and

θeB, can be written as, cos θeB = γre cos θeA. In order to make the model more convenient

to use in the case of γre < 1, we replace θeA by θeB in the evolution equations. Also, for

comparing with experiments [8], we assume both of the two components can evaporate and

introduce a relative evaporation rate parameter into the present theory model, Jre = JA/JB,

where JB is the evaporation rate for pure B droplet in dry ambient air, RHB = 0. Then the

evaporation rate becomes,

J(r) = JA

[
C(r)−RH +

1− C
Jre

]
. (A.42)

With the modified definition of J in Eq. (A.5), the volume change rate V̇ becomes

V̇ (t) = −
∫ R

0

2πrJA

[
C(r)−RH +

1− C
Jre

]
dr, (A.43)

and the height averaged velocity vf (r) has a new form

vf = r
Ṙ

R
−
(
r

2V
+

r3

2πR4h

)
V̇ − 1

rh

∫ r

0

JAr
′
[
C(r)−RH +

1− C
Jre

]
dr′. (A.44)

Then the time change rate of the concentration of volatile component Ċ(r) becomes,

Ċ = −vf
∂C

∂r
− JA
Jreh

[Jre (C(r)−RH)− C] [1− C(r)] . (A.45)

Then, inserting the new V̇ , Ċ, and vf (r) into the dissipation function Φ, and the time

change rate of free energy, Ḟ , results in an new Rayleighian function. Then, we repeat the

same minimization process to the Rayleighian and replace θeA by θeB, leading to an new

evolution equation of the contact radius, R(t),

τevṘ =
(γre − 1) θV

1
3
0

3γreαkev

[∫ R

0

C
r

R2

(
2r2θ2

R2
− 5

)
dr +

θ2 − θ2eB
2 (γre − 1)

+
3

2
C (R)

]
− RV̇ τev

4αV

−θθ0R
2
0

4αR3

∫ R

0

r

h2

[∫ R

r

r′
(
C +

1− C
Jre

−RH
)
dr′
]
dr,

(A.46)

The evolution equation of the contact angle θ(t) becomes

τevθ̇ =
(γre − 1) θ2V

1
3
0

γreαkevR

[∫ R

0

C
r

R2

(
5− 2r2θ2

R2

)
dr − θ2 − θ2eB

2 (γre − 1)
− 3

2
C (R)

]
+
θV̇ τev
V

(
1 +

3

4α

)
+

3θ2θ0R
2
0

4αR4

∫ R

0

r

h2

[∫ R

r

r′
(
C +

1− C
Jre

−RH
)
dr′
]
dr.

(A.47)
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FIG. 3. (a) Evolution of droplet contact radius, r, of an evaporating ethanol/water droplet on

heated substrate (70◦C) for various initial concentration of ethanol, χA0,i. Reprinted with the

permission from Reference [8]. Copyright (2020) Cambridge University Press. (b) Corresponding

theoretical results calculated by our theory model. R(t)/R0 is the droplet contact radius, and C0

is the initial concentration for the volatile A component, which is consistent with χA0,i in (a). All

calculations are done for θ0 = 0.4, RH = 0, θBe = 0.4, and ε = 10−7. All the other parameters

used for the calculation are given in the experimental parameters and theoretical framework of

Reference [8].

Williams et al. [8] studied the evaporation of ethanol/water droplet on a high energy

substrate, and found that increasing the initial ethanol concentration (χA0,i) can enhance the

droplet spreading, resulting in a larger maximum contact radius and shorter overall droplet

lifetime, as shown in Figure 3(a). The enhanced spreading of droplet radius is explained

by the fact that when χA0,i increases, the initial liquid/vapor surface tension decreases, and

also the surface tension gradient from the apex to the contact line increases. Both effects

enhance the spreading of contact line.

In order to compare with this finding, we carefully set values of parameters used in our

model according to real experimental values used in [8]. We calculated the total evaporation

rate, V̇0, of a pure water droplet by using the data in Figure (11) of [8]. Then, we obtained

the characteristic evaporation time of water droplet, τBev ≈ 0.24s (τev = −V0/V̇0). According

to Eqs. (2.12) and (2.13) in [8], we obtained the ratio of evaporation rate between ethanol

(JA) and pure water (JB) as Jre = JA/JB ≈ 10.26. Combing the two values of τev and Jre, we
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obtained the characteristic evaporation time of ethanol, τAev = τBev/10.26 ≈ 0.023s, which was

used as the scale time in our model. In addition, Table 1 and Eq. (2.2) of [8] give the values

of the surface tension of ethanol (γA) and water (γB), which are γA ≈ 2.24×10−2Nm−1 and

γB ≈ 6.61×10−2Nm−1, respectively. Then, the surface tension ratio of the faster evaporation

component over the slower one is γre ≈ 0.34. Finally, with the values of the initial volume

V0, viscosity ηA, γA and τAev, the evaporation rate parameter kev = ηAV
1/3
0 /(γAτ

A
ev) of our

present model has a value kev ≈ 1.88× 10−3. The calculated time dependent contact radius

from our model is shown in Figure 3 (b) for various initial concentration of the more volatile

component, C0. It is clear that when C0 increases from 0 to 0.3, the droplet spreading is

enhanced which is qualitatively consistent with the experimental results. The main reason

of this phenomenon is the same as the explanations in [8], which is due to the enhanced

Marangoni effects induced by the inhomogeneous surface tension.

C. Effects of the evaporation rate kev

In our model, the evaporation rate is determined by both kev and RH. The larger value

of kev or smaller value of RH represent the faster evaporation rate. Figure 4 (a) shows

the effect of kev on the time variation of the contact angle θ(t), and Figure 4(b) is the

corresponding time evolution of the contact radius R(t). When the evaporation rate is

relatively large (kev = 0.01), the contact angle decreases monotonically in time. When kev

decreases to 0.005, θ(t) starts to have a maximum value (i.e. a peak contact angle θpk

appears). The maximum value increases when kev decreases. Meanwhile, the contact radius

R(t) shows the decreasing-increasing transition as kev decrease as it is shown in Figure 4(b).

An important point here is that ∂C/∂r is almost independent of kev: ∂C/∂r is determined

by how much of the volatile component has evaporated, and it is independent how fast

the volatile component has evaporated. Figure 4(d) and (e) shows that C(r, t) at the edge

quickly goes to zero when RH = 0, while the change of C(r, t) in the droplet center is

relative slow. As the average concentration gradient is mainly determined by the difference

between the value of C(r, t) in the droplet center and in the edge, the Marangoni flow is not

strongly affected by kev. Therefore the change of θ(t) shown in Figure 4(a) is due to the

effect of evaporation: evaporation decreases the contact angle as it is indicated by the last
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FIG. 4. Evolution of (a) droplet contact angle θ(t), (b) droplet contact radius R(t)/R0, and

(c) averaged concentration gradient ∂C/∂r of an evaporating binary aqueous solution droplet for

various values of kev. The evolution of the distribution of volatile component concentration within

the droplet for (d) kev = 0.01, and (e) kev = 0.002. All other parameters are RH = 0.0, and

C0 = 0.6.

two terms on the right hand side of Eq. (A.35).

D. The values used for parameters

The justification for the values used for parameters in our calculations are provided as

follows.

(1) The evaporation rate parameter kev.

kev is defined by a ratio of two characteristic times, kev = τre/τev, where τre = ηV
1/3
0 /γA

and τev = V0/
∣∣∣V̇0∣∣∣. The time τev represents the characteristic evaporation time for pure

A droplet (of initial size V0), and τre represents the relaxation time: the time needed for

the pure A droplet (initially having contact angle θ0) to have the equilibrium contact

angle θe. The parameters η and γA are viscosity and surface tension of pure A droplet,
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respectively. Due to the large difference between these parameters in different systems

and conditions, the value range of kev is relatively large, and kev ∈ [10−9, 10] in general.

(2) The relative surface tension γre.

Using the droplets made of propylene glycol (PG) and water, Cira et al. [9] observed the

θpk phenomenon. The surface tension of water and PG in the experiment correspond

to γA = 73 mN m−1 and γB = 36 mN m−1, respectively [9]. Put these parameters into

γre = γA/γB, we have γre ≈ 2.03. Thus we set γre = 2 in our calculations.

(3) The initial contact angle θ0.

The error between cos θ and 1 − θ2/2 is within 0.5% when θ < π/6. Moreover, the

initial contact angle usually is set in between 0 − 0.5 in many other studies using

lubrication approximation theory. For example, Williams et al. [8] set the initial

aspect ratio H0/R0 = 0.2, which is corresponds to θ0 ≈ 0.4, where the evaporation of

ethanol/water droplets was studied both experimentally and theoretically. Thus it is

reasonable to set the initial contact angle θ0 = 0.3 in our calculations.
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