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S1. DETERMINATION OF THRESHOLD VALUE FOR THE BOND ORDER PARAMETER q̄6,limit

The fraction of particles within solid-like environments in the lamellar phase was estimated using the averaged bond
orientational order parameter proposed by Lechner and Dellago1. The appropriate value of the threshold value q̄6,limit
to discriminate between solid-like and liquid-like environments was obtained by plotting the distributions of the q̄6
parameter in the liquid-like lamellae and in the solid-like lamellae at T ∗ = 0.3. The effect of temperature on these
distributions was investigated by calculating them also at T ∗ = 0.2 for the solid-like lamellae and at T ∗ = 0.4 and
T ∗ = 0.5 for the liquid-like lamellae. The distributions were calculated using 100 independent configurations in each
case, and taking the cutoff distance rc = 1.4σ to consider two particles as first neighbours. The results are presented
in Figure S2. We observe that the distribution of the solid-like lamellae and liquid-like lamellae only overlap over a
small range of q̄6. Based on these results, we choose q̄6,limit = 0.43 as the threshold value to distinguish solid-like
from liquid-like environments.
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FIG. S1. Probability distributions of the q̄6 parameter at T ∗ = 0.3 for the liquid-like (cooling run) and solid-like (heating
run) lamellar phases. The probability distributions at higher (T ∗ =0.4 and T ∗ = 0.5) and lower (T ∗ = 0.2) temperatures are
also plotted. In the calculations of q̄6 we considered that two particles are bonded if the distance between then is lower than
1.4σ, which coincides with the minimum of the PDF in the lamellar phase (see Figure 4 of the manuscript). From this figure,

¯q6,limit = 0.43.

With the aim of validating the results obtained with the Lechner and Dellago order parameter, we compared the
results with those obtained with the implementation of the order parameter proposed by ten Wolde et al.2,3. In this
latter case, the bond order q6,m(i) (m = −6, 6) is evaluated for each particle i. Then this particle is considered to be
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solid if the dot product of the 13-dimensional vector q6,m(i) and the q6,m(j) vector of a number ξ of nearest neighbours
j is above a given threshold dc. This order parameter needs three parameters: the cutoff distance rc to consider two
particles as first neighbours, the threshold value for the dot product dc, and ξ. Here we chose rc = 1.4σ, dc = 0.7 and
ξ = 6. As it can be seen in Fig. S2, the results obtained with both order parameters are very similar.
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FIG. S2. Comparison of the evolution of particles with solid-like environments in the heating run of the lamellar phase using
the Lechner and Dellago1 order parameter (q̄6) and the one proposed by ten Wolde et al.2,3
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S2. BOND CORRELATION FUNCTION

With the aim of providing further insight into the dynamic behaviour of the periodic microphases we also evaluated
the bond correlation function φB(t). This function compares the bonds formed by each particle and its neighbours at
a given time t with respect to those at time zero4:

φB(t) =
〈
∑
i<j nij(t)nij(0)〉

NB(0)
(S1)

where the angular brackets denote ensemble average, nij(t) is a function whose value is one if particles i and j form
a bond at time t and zero otherwise. NB(0) is the number of bonds at time zero.

As can be seen in Fig. S3, the time at which the bond correlation function decreases to half its value increases
gradually with temperature in the cluster-crystal and cylindrical phases. In the lamellar phase, the temperature
T ∗ = 0.30 falls inside the hysteresis loop observed in the energy and density curves (see Figure 5 in the main text
of the article) and, consistently with this, this function behaves differently depending on whether the simulation at
T ∗ = 0.30 belongs to a heating or a cooling run (see Figure S3). Considering the results from a heating run, the decay
of φB(t) decreases gradually when temperature increases as in the cluster-crystal and cylindrical phases. However, if
the simulation at T ∗ = 0.30 is taken from a cooling run, the decay of the correlation time is very pronounced. This
is consistent with a situation in which the lamellae are frozen at lower temperatures (which is evidenced by the slow
exchange of neighbours of the particles) and that at T ∗ ≈ 0.30 undergo a transition to liquid-like lamellae.

Comparing now the evolution of the bond correlation function with density at constant temperature, the particles
change bonds at shorter times in the cylindrical phase, followed by the cluster-crystal that exhibits slightly longer
decay times, and by the lamellar phase, in which the decay of φB(t) occurs at much longer times, specially at the lower
temperatures. Notably, at T ∗ = 0.30, φB(t) decays at shorter times in the lamellar phase than in the cluster-crystal
and cylindrical phase if a simulation coming from a cooling run is considered.

1000 10000 1e+05 1e+06 1e+07
t/dt

0

0.2

0.4

0.6

0.8

1

φ
B
(t

)

T
*
=0.200

T
*
=0.225

T
*
=0.250

T
*
=0.275

T
*
=0.300

ρ
*
=0.155 (Cluster-Crystal)

(a)

1000 10000 1e+05 1e+06 1e+07
t/dt

0

0.2

0.4

0.6

0.8

1

φ
B
(t

)

T
*
=0.200

T
*
=0.225

T
*
=0.250

T
*
=0.275

T
*
=0.300

ρ
*
=0.252 (Cylindrical)

(b)

100 1000 10000 1e+05 1e+06 1e+07
t/dt

0

0.2

0.4

0.6

0.8

1

φ
B
(t

)

T
*
=0.200

T
*
=0.225

T
*
=0.250

T
*
=0.275

T
*
=0.300 (heating)

T
*
=0.300 (cooling)

ρ
*
=0.407 (Lamellar)

(c)

FIG. S3. Bond correlation function for the cluster-crystal, cylindrical and lamellar phases.
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S3. CLUSTER-CRYSTAL AT LOW TEMPERATURE

Given the finite size of the spherical clusters formed in the cluster-crystal phase, it is rather straightforward to extract
further information about the types of movement contributing to the MSD of the system at the lowest temperatures.
First, we measured the number of particles that leave the cluster to which they belong in the initial configuration.
As can be seen in Figure S4, at T ∗ = 0.200, after one million MD steps, only a small fraction of particles (about
0.5%) have migrated from one cluster to another, but this proportion increases rapidly at higher temperatures (e.g.
at T ∗ = 0.225 about 4% have abandoned their parent cluster after one million MD steps).

Given that at T ∗ = 0.200 the exchange of particles is rather small, it is also relatively easy to measure the MSD
using the center of mass of the clusters. As it can be seen in Figure S4, the cluster MSD does not increase at long
times, indicating that at this low temperature, long translational moves of the clusters are very unlikely. As can be
seen in the movie provided as ESI, the clusters can move due to vibrational and rotational moves about the lattice
positions of the cluster-crystal.
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FIG. S4. Analysis of the cluster-crystal phase at low temperature. a) Number of particles that leave the cluster to which they
belonged at the beginning of the simulation. b) Mean-squared displacement measured using the particles positions (black line)
and the center of mass of the clusters (red line).

S4. SCATTERING FUNCTIONS FITS

We fit the coherent (F (q, t)) and incoherent (Fs(q, t)) scattering functions obtained from simulations to stretched
exponential functions:

f(t) = exp(−(t/τ)β) (S2)

Figures S5 and S6 show the fits for F (q, t) and Fs(q, t) respectively. The values of the fit parameters and R2 are
reported in tables S1 and S2 for F (q, t) and Fs(q, t) respectively.
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FIG. S5. Coherent scattering functions, F (q, t), for the cluster-crystal, cylindrical and lamellar phases evaluated at the cluster-
cluster length scale(qm) and particle-particle length scale (qp). The circles are the data from simulations and the solid lines are
fits to stretched exponential functions.
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FIG. S6. Incoherent scattering functions, Fs(q, t), for the cluster-crystal, cylindrical and lamellar phases evaluated at the
cluster-cluster length scale(qm) and particle-particle length scale (qp). The circles are the data from simulations and the solid
lines are fits to stretched exponential functions.



7

TABLE S1. Fit parameters of the coherent scattering function F (q, t).

ρ∗ = 0.155 (Cluster-crystal) ρ∗ = 0.252 (Cylindrical) ρ∗ = 0.407 (Lamellar)

T ∗ qm qp qm qp qm qp

0.20

τ = −−
β = −−
R2 = −−

τ = 296.2867

β = 1.0000

R2 = 0.9916

τ = −−
β = −−
R2 = −−

τ = −−
β = −−
R2 = −−

τ = −−
β = −−
R2 = −−

τ = −−
β = −−
R2 = −−

0.30

τ = 1.0841 × 104

β = 0.6636

R2 = 0.9949

τ = 202.9495

β = 1.0000

R2 = 0.9965

τ = −−
β = −−
R2 = −−

τ = 257.9252

β = 1.0000

R2 = 0.9985

τ = −−
β = −−
R2 = −−

τ = 367.2056

β = 0.7905

R2 = 0.9958

0.40

τ = 2.8884 × 103

β = 1.0000

R2 = 0.9957

τ = 118.3306

β = 1.0000

R2 = 0.9943

τ = 7.3747 × 103

β = 0.8587

R2 = 0.9966

τ = 136.9300

β = 1.0000

R2 = 0.9962

τ = 1.2108 × 104

β = 0.8512

R2 = 0.9963

τ = 214.6687

β = 1.0000

R2 = 0.9985

0.50

τ = 1.4039 × 103

β = 1.0000

R2 = 0.9917

τ = 87.8390

β = 1.0000

R2 = 0.9903

τ = 2.4136 × 103

β = 1.0000

R2 = 0.9960

τ = 97.5759

β = 1.0000

R2 = 0.9925

τ = 3.0516 × 103

β = 0.9116

R2 = 0.9963

τ = 142.1264

β = 1.0000

R2 = 0.9961

1.00

τ = 3286.4280

β = 1.0000

R2 = 0.9846

τ = 57.9030

β = 1.0000

R2 = 0.9830

τ = 331.0405

β = 1.0000

R2 = 0.9888

τ = 59.2416

β = 1.0000

R2 = 0.9885

τ = 300.6419

β = 1.0000

R2 = 0.9915

τ = 74.6857

β = 1.0000

R2 = 0.9885

TABLE S2. Fit parameters of the incoherent scattering function Fs(q, t).

ρ∗ = 0.155 (Cluster-crystal) ρ∗ = 0.252 (Cylindrical) ρ∗ = 0.407 (Lamellar)

T ∗ qm qp qm qp qm qp

0.20

τ = −−
β = −−
R2 = −−

τ = 274.1604

β = 1.0000

R2 = 0.9953

τ = −−
β = −−
R2 = −−

τ = 415.1450

β = 0.8058

R2 = 0.9896

τ = −−
β = −−
R2 = −−

τ = −−
β = −−
R2 = −−

0.30

τ = −−
β = −−
R2 = −−

τ = 169.4021

β = 1.0000

R2 = 0.9982

τ = −−
β = −−
R2 = −−

τ = 206.2207

β = 1.0000

R2 = 0.9989

τ = 2.6564 × 104

β = 0.6790

R2 = 0.9998

τ = 320.4111

β = 0.7797

R2 = 0.9958

0.40

τ = 965.3414

β = 1.0000

R2 = 0.9956

τ = 102.6534

β = 1.0000

R2 = 0.9938

τ = 1.7007 × 103

β = 0.8610

R2 = 0.9961

τ = 114.8576

β = 1.0000

R2 = 0.9960

τ = 3.5903 × 103

β = 0.8603

R2 = 0.9994

τ = 163.6459

β = 1.0000

R2 = 0.9983

0.50

τ = 595.5857

β = 1.0000

R2 = 0.9941

τ = 80.6905

β = 1.0000

R2 = 0.9894

τ = 916.5354

β = 1.0000

R2 = 0.9981

τ = 86.9110

β = 1.0000

R2 = 0.9919

τ = 1.6872 × 103

β = 0.9896

R2 = 0.9996

τ = 110.3181

β = 1.0000

R2 = 0.9957

1.00

τ = 251.8659

β = 1.0000

R2 = 0.9783

τ = 56.1555

β = 1.0000

R2 = 0.9830

τ = 333.4213

β = 1.0000

R2 = 0.9875

τ = 56.9122

β = 1.0000

R2 = 0.9852

τ = 559.6968

β = 1.0000

R2 = 0.9961

τ = 65.0518

β = 1.0000

R2 = 0.9878


