Electronic Supplementary Information for: Measuring and upscaling micromechanical interactions in a cohesive granular material

Arnaud Hemmerle, ${ }^{1,2}$ Yuta Yamaguchi, ${ }^{3,4}$ Marcin Makowski, ${ }^{1}$ Oliver Bäumchen, ${ }^{1,5}$ and Lucas Goehring ${ }^{6}$
${ }^{1}$ Max Planck Institute for Dynamics and Self-Organization - Am Fassberg 17, 37077 Göttingen, Germany.
${ }^{2}$ Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France.
${ }^{3}$ Department of Earth and Planetary Science, University of Tokyo - 7-3-1 Hongo, Bunkyo, 113-0033 Tokyo, Japan.
${ }^{4}$ Department of Earth and Space Science, Osaka University - 1-1 Machikaneyamacho, Toyonaka, 560-0043 Osaka, Japan.
${ }^{5}$ Experimental Physics V, University of Bayreuth, Universitätsstr. 30, D-95447 Bayreuth, Germany.
${ }^{6}$ School of Science and Technology, Nottingham Trent University - Clifton Lane, Nottingham NG11 8NS, UK.

I. SUPPLEMENTAL MOVIE CAPTIONS

Movie S1 (S1_tension_test.avi)
Movie of a micromechanical test in the normal configuration, with normal spring constant $k_{n}=425 \mathrm{~N} / \mathrm{m}$, deformation speed of $1 \mu \mathrm{~m} / \mathrm{s}$, bead diameters $D_{1}=374 \mu \mathrm{~m}$ and $D_{2}=392 \mu \mathrm{~m}$, and bridge diameter $d=105 \mu \mathrm{~m}$.

Movie S2 (S2_shear_test.avi)
Movie of a micromechanical test in the tangential configuration, with tangential spring constant $k_{t}=16 \mathrm{~N} / \mathrm{m}$, deformation speed of $1 \mu \mathrm{~m} / \mathrm{s}$, bead diameters $D_{1}=396 \mu \mathrm{~m}$ and $D_{2}=364 \mu \mathrm{~m}$, and bridge diameter $d=75 \mu \mathrm{~m}$.

Movie S3 (S3_sample_A_particles_movie.avi)
Movie illustrating the particle detection for the X-ray microtomogram of Sample A. The movie pans through cross-sectional views of the sample. The detected particles have been replaced by black spheres, of diameter 200.9 $\mu \mathrm{m}$, to demonstrate the fidelity of the image processing. A list of the detected particle positions is given in the accompanying file S1_sample_A_particles_positions.txt.

Movie S4 (S4_sample_B_particles_movie.avi)
Movie illustrating the particle detection for the X-ray microtomogram of Sample B. A list of the detected particle positions is given in the accompanying file S2_sample_B_particles_positions.txt.

Movie S5 (S5_sample_A_simulation.mp4)
Movie showing example DEM simulation of uniaxial compression test with particle positions taken from sample A. The bead colour indicates, δ_{z}, the relative displacement along the axis of compression, z, of each particle relative to its position at zero strain, normalised by the particles diameter. This visualisation is consistent with that reported in the matching experiments, in Ref. [1].

Movie S6 (S6_sample_B_simulation.mp4)
Movie showing example DEM simulation of uniaxial compression test with particle positions taken from sample B.

II. SUPPLEMENTAL TABLE CAPTIONS

Table S1 (S1_sample_A_particles_positions.txt)
Position of the centre of each particle detected in the X-ray microtomogram of sample A (voxel size $=4.875 \mu \mathrm{~m}$). Columns 1 and $2: x, y$ coordinates (in pixels, relative to the (x, y) centre of the stack).
Column 3: z coordinate (in pixels, relative to the top of the stack).
Table S2 (S2_sample_B_particles_positions.txt)
Position of the centre of each particle detected in the X-ray microtomogram of sample B (voxel size $=4.493 \mu \mathrm{~m})$. Columns 1 and $2: x, y$ coordinates (in pixels, relative to the (x, y) centre of the stack).
Column $3: z$ coordinate (in pixels, relative to the top of the stack).
[1] A. Hemmerle, M. Schröter and L. Goehring, Sci. Rep., 2016, 6, 35650.

