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Cutting Instrument
Figure S1 shows a photograph of the instrument used for Y-
shaped cutting tests. The new configuration, including an in-
creased number of pulleys, enables a more stable cutting phase,
a wider available leg angle range, and a larger maximum cutting
distance than previously1. During testing, the sample is trans-
lated down toward the razor blade, which is rigidly mounted on
the load cell.
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Fig. S1 Test instrument for Y-shaped cutting test. The transparent
sample is mounted at the cutting position.

Commercially available razorblades having as-received or man-
ually blunted radii are cleaned prior to cutting tests. Commer-
cial blades include some types used previously:1 Feather single-
edge razorblade (FRB-SE, Feather® Safety Razor, Professional Su-
per), Feather double-edge razorblade (FRB-DE, Feather® Safety
Razor), shaving razorblade (SRB, Gillette®, double-edge), util-
ity razorblade (URB, GEM®, single edge, uncoated), and trape-
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zoid utility razorblade (TRB, Stanley®). Manual blunting on URB
blades with a large tip radius (BRB) is achieved with an 8000 grit
whetstone. Radii (Table S1) are measured via scanning electron
microscopy (SEM) and image processing (ImageJ).1

Table S1 Measured average radii of selected razorblades

Blade FRB-SE FRB-DE SRB URB TRB
R [nm] 38 68 83 129 246

Blade BRB #1 BRB #2 BRB #3 BRB #4 BRB #5
R [nm] 164 198 221 339 416

Blade BRB #6 BRB #7 BRB #8 BRB #9 BRB #10
R [nm] 519 560 740 873 989

Cutting and Tearing Contributions
Cutting contributions (C) and tearing contributions (T ) of all ma-
terials tested are calculated using Eqn. (1) introduced in the main
text. These results, together with the corresponding pre-loads
( fpre) and the ratios C/T , are listed in Table S2. The T values
vary between materials due to the different pre-loads required to
reach a designed average pre-stretch λ̄ = 1.04±0.01. The C values
reported in the table correspond to the average threshold cutting
energy, G∗cut, in Table 2 of the main text. The thickness for each
material is averaged between all samples.

Test Samples for Standard Characterization
Methods
Fig. S2 provides schematics of the dogbone-shaped sample used
for uniaxial tension tests following ASTM test standards ((ASTM
D412-16, die type C)) and the notched sample for pure shear
tearing tests. The procedure used to extract tearing energy from
pure shear testing are identical to methods listed elsewhere.1,2

For the uniaxial tension tests, fiducial markers are applied on the
surface of the rectangular test region towards the bottom side
of the dogbone-shaped sample to match the field of view of the
video extensometer. Fig. S2b shows a dog-bone shaped sample
pieced together after tensile failure. The simultaneous formation
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Table S2 Pre-loads and cutting and tearing contributions of all materials tested

Sol-4:1 Sol-1:1 Syl-10:1 Syl-d10:1 UPDMS BPDMS-80s BPDMS-90s BPDMS-95s BPDMS-98s
fpre [N] 0.98 0.22 0.98 0.25 0.39 0.29 0.34 0.34 0.34
C [J/m2] 56.2 109.3 45.4 54.4 27.7 11.1 9.8 6.5 8.8
T [J/m2] 88.5 18.5 87.4 23.0 33.7 27.9 35.0 33.0 32.3
C/T 0.63 5.92 0.52 2.36 0.82 0.40 0.28 0.20 0.27

of cracks at multiple sample locations (red arrows) at the onset of
rupture supports the idea that superficial defects were minimized
in the polished sample mold.
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Fig. S2 (a) Illustration of a standard dog-bone shaped sample used for
uniaxial tension tests. (b) A post-tensile-failure dog-bone shaped sample.
(c) The schematic of a notched sample used for pure shear tearing test.

Modulus Normalized Constitutive Responses
Fig. S3 reproduces the constitutive responses of all materials
tested introduced in Fig. 2c of the main text but normalizes the
stress responses by the corresponding shear modulus µ deter-
mined from the neo-Hookean model for comparison (fit range:
λ = 1− 1.1, Table 2). Initial linear regions of the constitutive
curves cluster under the normalization. In contrast, large-strain
nonlinear responses of strong strain-stiffening materials (e.g., Syl-
10:1 and Sol-4:1) and very stretchable, more neo-Hookean mate-
rials (e.g., Sol-1:1, Syl-d10:1, and UPDMS) are markedly different
from the overall linear behaviors of BPDMS (dotted line).

Fit to Arruda-Boyce
We use the approximate form of the incompressible Arruda-Boyce
model3,4 to capture the nonlinear constitutive responses of our
selected elastomers. The strain energy density function, using
the first five terms of the series expansion form for the inverse
Langevin function,3,4 can be expressed as

W = µ0

5
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where α1 = 1
2 , α2 = 1

20 , α3 = 11
1050 , α4 = 19

7000 , and α5 = 519
673750 .

µ0 and λm are the two fit parameters. For uniaxial tension,
the engineering stress versus stretch relationship is derived from
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Fig. S3 Shear modulus normalized constitutive responses for all elas-
tomers tested (solid lines). Each Arruda-Boyce fit shown (lighter dashed
lines) is averaged between three samples. A linear slope (dotted line) is
fit to the curves for BPDMS-90s to demonstrate their nominal linearity.
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where the first invariant I1 = λ 2 + 2
λ

for uniaxial tension. Fit
parameters for all elastomers are listed in Table S3. This ap-
proximate form for the Arruda-Boyce model differs from the true
Arruda-Boyce model in that the strains can become infinite. In
the full Arruda-Boyce model, the strain energy density becomes
infinite at sufficiently large, but finite stretch.

Tensile Cycling Test for Syl-10:1
To quantify hysteretic effects, we perform a tensile cycling test for
a representative Syl-10:1 material. Fig. S4 shows the engineering
stress versus stretch curves at a strain rate of ∼ 0.04 1/s in consec-
utive loading-unloading cycles to progressively higher stretches
(blue lines of differing color saturation). Minimal hysteresis is
observed up to a stretch ≈ 1.5.

Finite Element Analysis (FEA) for Y-Shaped
Cutting
FEA for cutting is carried out by simulating hyperelastic cutting
indentation at experimental conditions corresponding to cutting
within the plateau regime. We model a real-scale, symmetric Y-
shaped sample in ABAQUS, as shown in Fig. S5. The displace-
ment and force boundary conditions are applied according to the
experimental sample configuration (‘XSYMM’ symmetry along the
center line and fixed y-displacement at the top edge) and preload
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Table S3 Fit parameters for the Arruda-Boyce model and the Rubinstein-Panyukov network elasticity model

Sol-4:1 Sol-1:1 Syl-10:1 Syl-d10:1 UPDMS BPDMS-80s BPDMS-90s BPDMS-95s BPDMS-98s
µ0 [MPa] 0.08 0.08 0.09 0.06 0.17 0.37 0.33 0.30 0.32
λm 1.0 2.1 1.0 1.6 596.5 1.9 1.7 1.6 1.6
Ex [MPa] 1.12 0.16 1.20 0.27 0.54 1.42 1.30 1.33 1.36
Ee [MPa] 3×10−8 0.2 2×10−14 4×10−11 1×10−2 4×10−8 9×10−2 3×10−7 4×10−7

〈r0〉 [nm] 5.51 14.76 5.31 11.13 7.92 4.89 5.11 5.05 5.00
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Fig. S4 Engineering stress versus stretch response of Syl-10:1 in consec-
utive tensile cycles (strain rate: ∼ 0.04 1/s). Changes in the blue color
saturation indicate different load-unload cycles.

forces, respectively (Fig. S5a). Eight-node quadrilateral plane-
stress elements (CPS8) are selected. A circular fine mesh zone
of a radius ∼1 mm partitions the near-crack-tip region. The fine
mesh zone uses a size gradient that increases radially away from
the crack tip (≈ 1× 10−6 − 1× 10−2 mm)(Fig. S5b). This fine
mesh accommodates the local large strain/stress concentration
applied by the blade. Following the application of preloads, a
rigid analytical surface having the same dimensions as a sharp
razorblade contacts the sample surface at the notch vertex un-
der a ‘frictionless’ condition (Fig. S5c). A controlled longitudinal
displacement produces a reaction force history that is used to de-
termine simulation loading conditions of interest corresponding
to the experimental conditions for steady-state cutting within the
plateau regime. The deformation fields are then extracted from
the deformed configuration.

The Effect of Blade Tip Radius on FE Asymptotic Fields

To demonstrate the negligible effect of blade radius on the stress
field at a length scale r >∼ 3× 10−4 mm (Section 3.2 of the
manuscript), thus allowing blade contact to be treated as a line
load on a hyperelastic half space (nonlinear Flamant problem),
we compare the FE results for Y-shaped cutting at the same cut-
ting force but two different blade radii (R ≈ 130 nm and R ≈
725 nm). The asymptotic stress and strain components (σ11, σ22,
λ11, and λ22, ) are obtained along the center line of a simulated
Syl-10:1 sample as functions of the distance from the crack tip, r
(Fig. S6). The same reaction force conditions, corresponding to
the experimental cutting force within the plateau regime (∼ 0.13
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Fig. S5 Illustrated FE model and meshing for Y-shaped cutting. (a) A
real-scale symmetric model for a Y-shaped sample. A ‘XSYMM’ bound-
ary condition is applied to the upper part of the body (black dash-dotted
line). A preload matching the experimental condition is applied to the
lower leg in the form of surface traction. (b) A close-up image of the
circular partition and the gradient meshing near the crack tip. The local
coordinate system is labeled in red arrows. (c) Elastic contact between
the sample and a rigid blade surface, after the preload is applied.

N), are implemented for both radii. It is evident that the near-
tip asymptotic fields become blade-radius-independent outside a
length scale r ∼ 3×10−4 mm, which is in the order of magnitude
of a typical blade radius used.

Interpretation of FE Results Far from the Crack Tip

In Figs. 3a and 3b, as r→∞, σ11→ 0 and σ22 tends toward a small
but finite tensile value that differs slightly between the material
formulations. The latter arises from experimental conditions due
to differences in the threshold cutting force between materials.
Under plane stress constraints, the application of pre-loads at a
given angle in the two legs produces bending moments that must
be supported in the wider leg about 1 mm from the crack tip. In
reality, these small moments probably cancel one another nearer
the crack tip through slight sample twist. This constraint gives
rise to the short-region of low magnitude compressive stress in
σ11 (lighter symbols, Fig. 3a for increasing r. For the same reason,
σ22 exhibits an unnaturally sharp transition to the far-field value
in the same r = 1−10 mm region.

FEA for Nonlinear Flamant Problem
A FE simulation for a line load acting on a hyperelastic Arruda-
Boyce half space, i.e., the nonlinear Flamant problem, is carried
out to verify the associated asymptotic stress fields. As shown in
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Fig. S6 FE asymptotic stress and stretch components for a Syl-10:1 material at two different blade radii (R≈ 130 nm, orange data points and R≈ 725
nm, blue data points). The magnitude of the stresses normalized by the shear modulus is marked with (+) for tension (saturated points) and (−)
for compression (light-colored points). (a) Normalized crack-opening stresses (σ11) along the sample center line. (b) Normalized longitudinal stresses
(σ22) along the sample center line. (c) Crack-opening stretches (λ11) along the sample center line. (d) Longitudinal stretches (λ22) along the sample
center line. Inset: Illustration of a blade-sample contact with the local coordinate system.
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Fig. S7, a unit line load, F = 1, compresses a strain-stiffening sub-
strate material having constitutive parameters of Syl-10:1. The
transverse stresses σ11 and the longitudinal stresses σ22 are ex-
tracted along the vertical line of load from the deformed con-
figuration. We compare σ11 and σ22 to a 1/r singularity (light-
colored dotted lines) within ranges r = 10−3− 5× 10−2 mm and
r = 10−3 − 10−1 mm, respectively. The results show that both
asymptotic stress components deviate little from a 1/r singular-
ity near the crack tip. This simulation for the nonlinear Flamant
problem agrees with the theoretical predictions in literature.5

FE Analysis of A Minimum Damage Zone
from Blade Indentation
As discussed in Section 4.2 of the manuscript, We perform FE
simulation of a blade indenting a hyperelastic Arruda-Boyce
half-plane to determine the radius-normalized damage volume
V/(R2t) and its dependence on modulus-normalized applied force
per unit thickness F/(µR). As illustrated in Fig. S8, a rigid blade
surface having a unit radius indents elastically into a material
substrate (CPS8 plane-stress quadrilateral elements) with con-
trolled displacements. The contact simulation in Abaqus adopts
a ‘hard contact’ normal behavior to minimize the penetration of
the slave surface and a ‘frictionless’ tangential behavior to be con-
sistent with experimental cutting conditions. Reaction forces per
thickness F in the direction of indentation are extracted at in-
creasing displacements. The corresponding damage volumes V
are calculated at the same time from the sum of the volumes of
all elements that satisfy a given modulus-normalized strain en-
ergy density threshold, wt/µ. As demonstrated in Fig. S8, the
resultant V/(R2t) vs. F/(µR) curves shift positive or negative de-
pending on the wt/µ threshold. The desired wt/µ is obtained
when a reference point (closed symbol, marked by orange dotted
lines) at V/(R2t) =Vmin/(L∗

2t) = 4 is equal to a normalized force
F/(µR) = F/(µL∗) that matches the experimental cutting force
within the plateau regime.

Journal Name, [year], [vol.],1–8 | 5



10 -3 10 -2 10 -1 10 0
10 -2

10 0

10 2

10 -3 10 -2 10 -1 10 0

10 0

10 2

(a) (b)

F F
1

0.5

0

-0.01

-5

-10

1
11 rσ µ −



1
22 rσ µ −



Fig. S7 Simulated stress components for the nonlinear Flamant problem. (a) Shear modulus µ normalized transverse stresses σ11 compared with a
1/r singularity (light-colored dotted line) along the vertical line of load. The inset shows a contour plot of the asymptotic stress field. (b) Normalized
longitudinal stress magnitudes |σ22|/µ agree with a 1/r singularity over three decades.
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Fig. S8 FE Characterization of a minimum damage zone using blade indentation on a hyperelastic half space. (a) The FE meshing and test
configuration. The plane of symmetry is marked by the dash-dotted line. A ‘YSYMM’ boundary condition is applied for the bottom surface of the half
space. (b) The V/(R2t) vs. F/(µR) curve shifts positive or negative at different threshold w/µ values. The best threshold w/µ ≈ 25.4 is determined
through tuning when V/(R2t) =Vmin/(L∗2t) = 4 at an experimental cutting force F/(µR) = F/(muL∗).
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A Network Elasticity Model to Determine
Crosslink Density for the Lake and Thomas
Model
To determine the contribution of crosslinks and entanglements in
our materials, we fit the uniaxial stress-stretch data with the net-
work elasticity model proposed by Rubinstein and Panyukov6,7

σ =
1
3

(
λ − 1

λ 2

)(
Ex +

Ee

0.74λ +0.61λ−0.5−0.35

)
, (S3)

where Ex and Ee are the contribution of crosslinks and entan-
glements, respectively. Fitting curves and fitting parameters for
a stretch range λ = 1− 1.5 are shown in Fig. S9 and Table S3,
respectively. The average number of backbone bonds Nx is then
estimated from Ex

Nx =
3ρNAkBT

M0Ex
, (S4)

where ρ is the material density, NA is the Avogadro’s constant,
kB is the Boltzmann constant, T is the absolute temperature,
and M0 = 37 g/mol is the average molecular weight of a PDMS
backbone atom. The bulk density of crosslinks νx is determined
by the relationship Ex = 3νxkBT . The average distance between
crosslinks 〈r0〉 is calculated via the expression 〈r0〉= l0

√
C∞Nx, as

mentioned in the main text. The resultant 〈r0〉 values for all ma-
terials tested are provided in Table S3.
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Fig. S9 Fitting results for the network elasticity model. Constitutive
responses of elastomers (solid lines) are fit within a stretch range λ =

1−1.5 (light-colored dashed lines).

Estimating Enthalpic Distortion of PDMS
from Single-Strand Stretch Data
We estimate a more accurate released energy U for chain break-
age from single-strand stretch data described by the modified
freely jointed chain model (m-FJC) following the work of Wang
et al.8 A good approximation of U is given by the associated en-
thalpic distortion energy per bond, Ue, which has a form8

U ≈Ue =
1
2

f 2
b
fs

l0. (S5)

The characteristic stretching force fs can be calculated from

fs = kKuhnb (S6)

We estimate the Kuhn segment stiffness kKuhn and the Kuhn length
b by fitting experimental force versus extension data for a single
PDMS strand from literature9 with the m-FJC model, which takes
a form8,10

R = L0

[
coth

( f b
kBT

)
− kBT

f b

]
(1+

f
kKuhnb

), (S7)

where R is the average end-to-end distance, L0 is the contour
length, and f is the tension. The best fitting result is shown in
Fig. S10 (red dashed line), which gives kKuhn ≈ 12.9 N/m and
b ≈ 1.47 nm, yielding U ≈Ue ≈ 4.89× 10−20 J. We note that the
order of magnitude of the estimated U agrees with an estimation
predicted using the wormlike chain model (WLC) and an average
persistence length p ≈ 0.31 nm.9 The force on a single polymer
chain according to the WLC model can be written as10

f =
kBT

p

[1
4

(
1− R

L0

)−2
+

R
L0
− 1

4

]
(S8)

For a typical number of backbone atoms N = 465 and a Si-O bond
length 0.165 nm,11 the area under the curve of the WLC model
predicts U ≈ 1.7× 10−20 J, close to the estimate obtained from
Eqn. (S5) despite its being a more simplified model.
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Fig. S10 PDMS single-strand stretch data9 (blue circles) fit with the
m-FJC model (red dashed line)

Mechanical and Fracture Responses of Bi-
modal PDMS Networks
We use the BPDMS system as a controlled model material for
some of the findings discussed in the main text, including map-
ping cutting and tearing and the existence and onset of the
plateau and the strain-stiffening responses in cutting. With the
BPDMS materials, we create an elastomer with a designed consti-
tutive response by changing only two network components. The
mechanical performance of the BPDMS depends on its specific
chemical compositions. Particularly, short chains bear stresses
via their finite extensibility induced strain-stiffening, while long
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chains provide high stretchability. This creates a toughening
mechanism that may explain why the constitutive responses of
BPDMS in Fig. 2 show slightly reduced stretchability but com-
parable or even larger tensile strength compared to the UPDMS
counterpart (e.g., BPDMS-90s vs. UPDMS). The chain-mediated
mechanical behaviors also enable systematic control over the con-
stitutive response of BPDMS. As introduced in the Materials Sec-
tion of the manuscript, the BDPMS networks are comprised of a
long-chain with molecular weight Ml and a 500 g/mol molecular
weight short-chain at a concentration ms. The ms values are tuned
according to the corresponding Ml to produce identical nonlinear
stress vs. stretch response, but lead to different ultimate proper-
ties. We verify the controlled nonlinear elastic response via the
uniaxial tests shown in Fig. 2d. The constitutive curves coincide
with each other within their extensibility. The maximum relative
difference is less than 5%. At the same time, ultimate proper-
ties differ between BPDMS, namely λb and wb decrease with the
increasing ms — with the exception of BPDMS-80s. This trend
is anticipated from previous experimental observations12,13 and
may only apply when the increment of stretchability due to the in-
creased long-chain length does not compensate for the brittleness
caused by the increased short-chain concentration.

At the short chain concentrations used, BPDMS is thought to
exhibit architectural inhomogeneity in the BDPMS, theorized to
originate from kinetics-driven short-chain clustering.14–18 The
onset of short-chain clustering/aggregation occurs when the
probability of end-linking short chains becomes much higher than
end-linking long chains in a pre-polymer mixture. Therefore,
forming a heterogeneous structure of short chain clusters linked
by longer chains requires both a high short-chain concentration
and a large difference between the two chain lengths. It has been
suggested in some bimodal PDMS networks15,18 that a thresh-
old short-chain concentration may exist below which the short-
chain clustering likely vanishes and the network becomes homo-
geneous. We speculate that the short-chain molar concentration
of BPDMS-80s is approaching such a threshold as we observe a
reduction in its cutting energy and strain at failure after all previ-
ous formulations with decreasing short chain concentration were
increasing in these properties. Such short-chain clustering may
result in ‘super-crosslink’ structures linked by long chains with a
relatively high effective coordination number (>4). These struc-
tures have been suggested as serving as topological restraints
that are responsible for the stiffening and toughening effects ob-
served in bimodal networks compared to their unimodal coun-
terparts14,18,19. For example, BPDMS-90s appears to have both

higher µ and wb than UPDMS, and a comparable Gtear despite
the fact that BPDMS-90s has a much smaller average end-to-end
distance between crosslinks than UPDMS.
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