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I. EXPERIMENTAL DETAILS (SAMPLE PREPARATION)

The nanorods are synthesized by a templating method on Anodic Aluminium Oxide (AAO) membranes (Whatman
Anodisc™ 47) with a typical pore diameter of 0.3µm. Prior to the electrodeposition, one side of the AAO membrane
is sealed by thermo-evaporation of a 150 nm thick layer of silver (BAL-TEC MCS 010 Multi Control System).

The electrodeposition is made in three steps using a three-electrodes method:

• A layer of silver is deposited at −1V from an aqueous solution of silver cyanide (0.0186 M, AgCN, Thermo
Fisher Scientific Inc.), potassium cyanide (0.1233 M, KCN, Thermo Fisher Scientific Inc.) and potassium
pyrophosphate (0.0304 M, K4P2O7, Sigma-Aldrich, Co. LLC) to prevent leakages.

• A layer of gold is deposited at −0.92V from a commercial plating solution (OROTEMP 24 RTU Rack from
TECHNIC INC).

• In the case of Au-Rh symmetric nanorods, a layer of rhodium is deposited at −0.4V from a commercial plating
solution (Techni Rhodium RTU from TECHNIC INC). In this case, the deposition charges of gold CAu and
Rhodium CRh are 16C and 68C, respectively.
In the case of Au-Pt nanorods, a layer of platinum is deposited at −0.4V from an aqueous solution of ammonium
hexachloroplatinate (IV) (0.010 M, (NH3)2PtCl6, Alfa Aesar) and sodium phosphate dibasic dihydrate (0.020
M,Na2HPO4, Sigma-Aldrich, Co. LLC). The deposition charges of gold and platinum are CAu = 7.2C and
platinum CPt = 26C for symmetric rods and CAu = 24C and CPt = 9C for long gold segment rods.

The silver layer is etched away in a solution of HNO3 (1 M), and the membrane is dissolved in a NaOH solution (5
M). The resulting suspension with nanorods is purified through a repeated centrifugation/dilution process.

A. Rods’ parameters

Table I shows the geometry of the rods, their diffusion coefficients (Dt and Dr) and their swimming speeds (V0) at
different H2O2 concentration.

TABLE I: Table of geometrical and physical properties of symmetric Au-Rh nanorods and the two Au-Pt nanorod types with
gold and platinum fractions (lAu : lPt).

Batch Dt [µm
2/s] Dr [1/s] V0 [µm/s] H2O2%

Au-Rh(1:1) L = 2.5µm 0.3 1.04 0 0
Au-Rh(1:1) L = 2.5µm 0.3 1.04 2.7± 0.3 10
Au-Rh(1:1) L = 2.5µm 0.3 1.04 4.5± 0.5 15
Au-Rh(1:1) L = 2.5µm 0.3 1.04 8.0± 1.0 30
Au-Pt(1:1) L = 2µm 0.25 0.6 6.1± 0.8 15
Au-Pt(3:1) L = 2µm 0.25 0.6 6.5± 0.7 20
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II. CENTER OF HYDRODYNAMIC STRESS (COH)

The choice of a tracking point to describe the orientation of a body cannot affect the dynamics of the system
(of course!) but it affects the structure of the equations of motion. In systems with inertia, it is natural to choose
the center of mass (CoM) as the tracking point because the translational and rotational contributions to the kinetic
energy decouple. For particles immersed in a Stokes flow, where inertia does not play a role, other choices are more
convenient. This issue was explored by Brenner in the 1960s [1] and later expanded and clarified by García Bernal
and García de la Torre [2]. We reproduce here their principal results for completeness.

Consider a rigid body immersed in a three dimensional Stokes flow. Its dynamics can be described by the linear
and angular velocity about a tracking point 1. The linear system that relates the force and torque (F1 and τ1) with
the linear and angular velocities (V1 and ω1) is(

V1

ω1

)
=

(
MV F,1 MT

ωF,1

MωF,1 Mωτ,1

)(
F1

τ1

)
, (1)

where the 3 × 3 mobility components MV F,1 etc. depend on the tracking point chosen to describe the motion as
indicated by the subindex 1. The force, torque and velocities defined at a second tracking point are

F2 = F1, τ2 = τ1 − r × F1, (2)
V2 = V1 + ω1 × r, ω2 = ω1, (3)

where r is the vector that goes from the first to the second tracking point, see Fig. 1 left. We can use (1)-(3) to show
that the mobility components transform between tracking points like [2]

Mωτ,2 = Mωτ,1, (4)
MωF,2 = MωF,1 +Mωτ,1 × r (5)
MV F,2 = MV F,1 − r × (Mωτ,1 × r) +MT

ωF,1 × r − r ×MωF,1, (6)

where the cross product between a 3× 3 matrix and a vector is defined, using the Levi-Civita symbol, as (M ×r)ij =
Mikεjklrl and r ×M = −M × r.

For any body shape there is a special tracking point where the coupling matrix MωF is symmetric. This point is
called in the literature the Center of Mobility [2]. The location of the center of mobility with respect to an arbitrary
tracking point can be found by solving for i 6= j the linear system [3](

εikl (Mωτ )jk − εjkl (Mωτ )ik

)
rl = (MωF )ij − (MωF )ji , (7)

where the mobility components are calculated at the original tracking point. For bodies of enough symmetry (e.g.
axisymmetric bodies), the coupling matrix MωF vanishes at the center of mobility. In such cases, the center of
mobility is also called the Center of Hydrodynamic stress (CoH). Therefore the CoH can be found from (7) if it exists.

For two dimensional systems (or three dimensional particles constrained to move in the xy plane), the CoH always
exists and it corresponds to the point where a torque applied out of the plane does not generate translations. We can
compute its location respect an arbitrary tracking point with [3]

r =

(
MωzFy

Mωzτz

,
MωzFx

Mωzτz

)
. (8)

As discussed in the main text, we use this tracking point to uncouple the rotational equation of motion from transla-
tions.

The figure 1 right shows that if the hydrodynamic interactions with the wall are neglected the density mismatch is
not enough to explain the orientation bias of the rods observed in the experiments.

III. EFFECT OF THE SWIMMING SPEED

In this section we estimate the critical swimming speed that allows upward movement (i.e. 〈Vx〉 > 0). When the
reorienting torque is very large (i.e. K � 1) the rods are aligned with the x-axis and the critical swimming speed
coincides with the speed of sedimentation along the wall V0c = µ‖mg sinβ, here µ‖ is the tangential mobility of the
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FIG. 1: (Left) Sketch of a rigid body with two tracking points. (Right) Reproduction of the figure 6c from the main text,
K vs. β, for experiments (symbols) and theoretical fits (continuum lines). We include the theoretical prediction assuming
dCoH = 0 (dashed lines) which reveals the important effect of a finite dCoH to fit the experimental results.

rod. For weak reorienting torques, K / 1, like in our experiments the critical swimming speed will be larger as the
rods are not always aligned with the x-axis. We use our mechanical model to estimate V0c in this regime. The linear
velocity of the Center of Hydrodynamic stress (CoH) is (from eq. [1] in the main text)

V =

(
V0 cos θ
V0 sin θ

)
+MV FF + [noise terms], (9)

note that the torque does not appear explicitly because we use the CoH as the tracking point. The mobility depends
on the angle θ between the rod and the x-axis

MV F =

(
cos θ − sin θ
sin θ cos θ

)(
µ‖ 0
0 µ⊥

)(
cos θ − sin θ
sin θ cos θ

)T

, (10)

where µ‖ and µ⊥ are the parallel and perpendicular mobilities (for a slender body µ‖ = 2µ⊥). Therefore, the velocity
along the x-axis is

Vx = V0 cos θ + µ⊥Fx + (µ‖ − µ⊥)Fx cos
2 θ + [noise terms], (11)

and after integrating over orientations we get

〈Vx〉 =
1

2π

∫ π

−π

VxP (θ)dθ = V0
I1(K)

I0(K)
+

1

2

[
(µ‖ + µ⊥) + (µ‖ − µ⊥)

I2(K)

I0(K)

]
Fx, (12)

where In(x) are modified Bessel functions of the first kind and we used the angle distribution, P (θ) =
exp(K cos θ)/(2πI0(K)), obtained from the eq. [2] in the main text. To first order in K

〈Vx〉 =
V0K

2
+

µ‖ + µ⊥

2
Fx. (13)

Upward swimming (〈Vx〉 > 0) is possible when K > −(µ‖ + µ⊥)Fx/V0, i.e. when K is larger than the ratio between
the sedimentation velocity and the intrinsic swimming speed. After substituting the values of the gravitational force,
Fx = −mg sinβ, and K = r0mg sinβ cosα/kBT , we obtain the critical swimming speed for weak reorienting torques

V0c =
(µ‖ + µ⊥)kBT

r0 cosα
. (14)



4

FIG. 2: Experimental results (symbols) of gravitaxis of bottom-heavy rods for several swimming speeds controlled with the
H2O2 concentration. The dashed line represents the sedimentation velocity estimation U0(β) = −µ‖mg sinβ.

Interestingly, in this regime the critical swimming speed is independent of the particle mass and the inclination of the
wall, as long as mg sinβ > 0, because the gravitational pulling force contributes both to reorient the particle upwards
and to pull it downwards. The length of the lever arm, r0, is critical.

Using the mobility approximation of a cylinder in bulk (µ‖ = (log(L/r) − 0.72)/(2πηL) and µ⊥ = µ‖/2 [1]) we
estimate a critical swimming speed of around 4µm/s for our Au-Rh particles. Indeed, Fig. 2 shows that slow rods
fall for all wall inclinations. Faster rods with V0 = 4.5µm/s show upslope motion (shaded area) for moderate values
of β. For higher swimming speeds, upslope motion is visible for all inclinations.

IV. ADDITIONAL NUMERICAL RESULTS

We provide here some additional results obtained from numerical simulations to support our claims. First, we show
the tilt angle α of rods towards the wall in the left panel of figure 3. Rods with long gold segments tilt more. This is
consistent with our previous investigation about the dynamic of phoretic swimmers in shear flows [4]. Note that the
tilt angle is controlled by the location of the active slip along the rod and that the density difference between Au-Rh
and Au-Pt plays a minimal role. We show the computed distance between the CoH and the rod’s center in Fig. 3
right. The physical interpretation of these results is that the higher drag near the front of the rod displaces the center
of rotation forward. Note that in the limit where a rod is pinned to the wall the anchor point will act as the center
of rotation.

In simulations with Brownian noise we are able to measure the average velocity along the wall 〈Vx〉 and the
orientation bias measured by K just like in the experiments. Brownian motion can be included into our model by
adding a stochastic contribution, ustoch

i =
√
2kBT/∆t

(
M1/2W

)
i
, to the right hand side of the slip condition, Eq. 1

in the main text, and using an stochastic integrator to update the rod position and orientation [3, 5].
In the top panels of Fig. 4, we show the average velocity along the x-axis versus the wall inclination for Au-Pt

and Au-Rh rods. In the bottom panels of Fig. 4, we show K versus the wall inclination β. The Au-Rh rods swim
upwards for all inclinations and all swimmer types. Meanwhile, Au-Pt rods with short-gold segement and symmetric
swimmers fall although their orientations show that they point upwards most of the time. Au-Pt rods with long-gold
segment show a weak upward swimming bias. All these results agree qualitatively with the experiments although
the numerical swimmers are better gravitactors. We note that in the simulations we model the active slip instead
of solving the complicated electrochemical problem that ultimately creates the active flows. Moreover, we ignore if
there are electrostatic forces between the rods and the wall which could affect the results. For these reasons we do
not expect a perfect agreement between the simulations and the experimental results. The great contribution from
the simulations is to show, in a perfect controlled system, the same general behavior as in the experiments.
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FIG. 3: Results from deterministic simulations for L = 2µm long rods. (a) tilt angle α with the wall for rods with different
gold fractions. (b) Distance between the CoH and the rod’s geometric center assuming that the rod’s head is at a height
h = 0.2µm from the wall.
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FIG. 4: Comparison between experimental results (open symbols) and Brownian simulations (full symbols) of 2µm long rods
swimming near a wall. Top panels: mean upward velocity versus wall inclination for Au-Pt (Left) and Au-Rh rods (Right).
Bottom panels: K parameter versus wall inclination for Au-Pt (Left) and Au-Rh rods (Right). The continuum lines are fit
of the numerical results to the theoretical formula.
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