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I. PATCH SIZE AND PATCH CURVATURE DETERMINATION

FIG. 1. AFM measurements of the particle patches. (a) Large-patch dipatch particles (DP-A):

Schematic indicating definition of projected patch diameter dp and patch arc angle θp, surface

height measured using AFM (zoom on patch) and height profile along the blue line indicated in

the surface plot. (b) Small-patch dipatch B particles (DP-B) (c) Height profile zoomed in on patch,

aspect ratio between x and y is set to 2.

We determined the average patch size of each particle type using a setup that combines

optical and atomic force microscopy (AFM), as described in ref. [1]. We quantified the patch

size in terms of the patch arc angle θp, which is a particle size independent measurement of

the patch size, see the schematic in Fig. 1(a,b). The patch arc angle was determined from the

projected patch diameter dp and particle diameter d using the relation θp = 2 sin−1(dp/d),

see table I(third column). Here, the uncertainty is the standard deviation of the measured

patches and gives the patch size polydispersity. We note that the polydispersity is a rough

estimation limited by the low measurement statistics.

Apart from patch sizes, the AFM measurements also provide information on the height hp

of the patches. Not all patches stick out equally, as shown by the profiles that are zoomed-

in on the patch (Fig. 1c). This results in a different curvature at the patch than for the

rest of the particle. Modelling the patches as spherical caps, we can extract the radius of

curvature R of each patch via R =
(
(dp/2)2 + h2p

)
/2hp, see table I. Next to patch size,

the patch curvature will influence the inter-patch interaction, as a higher curvature results

in less contact when patches are close together and is therefore expected to decrease the

interaction strength.
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Particle type d [µm] dp [µm] θp [◦] hp [nm] Rp [µm]

DP-A 3.2(1) 0.58(5) 21(2) 45(5) 1.0(2)

DP-B 3.1(1) 0.38(5) 14(2) 15(5) 1.2(2)

TABLE I. Patchy particle patch morphology parameters measured using AFM, from left to right:

Particle diameter d (determined in solution using optical microscopy), projected patch diameter

dp, patch arc-angle θp, patch height hp, patch radius of curvature Rp.

II. PARTICLE DYNAMICS AT THE SURFACE

To determine the underlying diffusion time scale of the sedimented particles, we measured

their mean-square displacement. The resulting MSD as a function of time (Fig. 2) shows a

diffusive power law as expected, but with a diffusion coefficient D = 0.035± 0.005 µm2/s, a

factor of 2 smaller than the bulk diffusion coefficient Deinstein = kT/6πrAη = 0.074µm2/s,

where we have used the solvent viscosity η = 1.9mPas for the binary mixture at T = 30 C◦

[2].

For a particle-surface separation smaller than the particle radius, diffusion is expected

to slow down significantly. Due to hydrodynamic particle-wall interactions, the diffusion

coefficient should decrease according to [3]

D = Deinstein

(
1− 8

15
ln(1− β) + 0.029β + 0.04973β2 − 0.1249β3

)−1
, (1)

where β = r/h and h the height of the particle center. Fitting this equation we find

h − r = 0.2 µm, which is close to the gravitational height of the particles, and presents an

effective average height of the particles.

III. FOURIER ANALYSIS

The decomposition of chain bending fluctuations in Fourier modes is provided by eq. 1 in

the manuscript. The equation is similar to the expression for continuous filament, with the

only difference that we use a discrete Fourier transform. We note that the mode n = 0 is

merely a global chain orientation, and is not considered in the manuscript, while n = 1, 2, 3

etc. correspond to bending fluctuations of increasing order.

3



FIG. 2. Diffusion dynamics of individual DP-A particles. The mean square displacement is aver-

aged over 300 particles. Blue line is a fit to the 2D diffusion power law, 〈∆r2〉 = 4D∆t.

The mode inaccuracy as a consequence of the locating error ε follows the relation [4]

σ2
noise(αq) =

4

L0

ε2
[
1 + (N − 2) sin2 (nπ/2(N − 1)) .

]
. (2)

IV. TRANSVERSE AND LONGITUDINAL CHAIN DRAG COEFFICIENTS

The bending relaxation dynamics of a chain is expected to be, at least partly, connected

to the diffusion dynamics of the center of mass (COM) of the chain. We can use the exact

same data as was used to study the bending dynamics to also determine the COM diffusion.

For a semiflexible chain it is convenient to seperate COM diffusion into two components:

a transversal and a longitudinal diffusion, see Fig. 3(a). To determine the mean square

displacement in both directions, first the coordinate system at each frame was rotated by

the average tangent angle 〈φ〉i at that frame. In this way the x-axis coincides with the

longitudinal direction and the y-axis with the transversal direction, such that MSDT
COM =

MSDCOM,x and MSDL
COM = MSDCOM,y. The resulting mean square displacement of the

N = 15 chain used for most of the analysis in this chapter is shown in Fig 3(b). Good

fits are obtained with diffusive relations MSDT
COM = 2DT∆t and MSDL

COM = 2DL∆t. A

significantly faster diffusion is obtained in the longitudinal direction which is to be expected

for a linear object. We extract the associated drag coefficients per unit length γTCOM =

kT/(DTNd) and γLCOM = kT/(DLNd), where d is the particle dameter, see Fig. 3(c). Note

that we here normalise by the distance between the two tips L′0 = N d of the chain rather

than the distance between the centers of the two end particles L0 = N d. No significant
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FIG. 3. Transverse (blue) and longitudinal (red) diffusion and associated drag coefficient of dipatch

chains (a) Snapshot of the N = 15 big-patch chain with center of mass (white transparent dot) and

the two diffusion directions (b) mean square displacement and linear diffusive fits at different tem-

peratures. (c,d) The extracted drag coefficients per unit length as a function of temperature with

fixed length N = 15 and length with fixed ∆T = 0.15K. (e) Ratio of transverse and longitudinal

drag coefficients as a function of chain length

dependence on temperature is observed, which also means the bending rigidity range that

is explored here does not alter diffusivity, in line with Ref. [5]. We average all temperatures

to obtain the best estimates γTCOM = 31 ± 3 mPas and γLCOM = 20 ± 1 mPas. From the

absence of a temperature dependence we further can conclude that there is no significant

critical Casimir attraction between particles and wall, which, if present, would give rise to

an apparent increase in the drag coefficient with increasing temperature.

We have likewise extracted the center of mass drag coeficients for chains of different sizes

and noralized by the chain length, see Fig. 3(d,e). These normalised drag coefficients appear

to be fairly consistent over different chain sizes though appear to decrease for longer chains.

In addition, a clear trend towards a larger constast between transversal and longitudinal

diffusion is observed, which is to be expected due to the increased assymetry in length.
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V. ANALYSIS OF SLOW RELAXATION

In order to model the secondary slower relaxation we use the same analysis strategies as

used in ref. [6], which are generally valid in the presence of internal friction. In this case the

Langevin dynamics of a filament is modified with an additional dissipatory term:

B
∂4u

∂s4
+ γ

∂u

∂t
+ γ′

∂

∂t

(
∂4u

∂s4

)
= f(s, t). (3)

The third term represents internal friction with internal friction coefficient γ′. Solving this

case, the equation for the relaxation time becomes modified to Eq. 7 of the main text.

This equation implies that at wave vectors larger than qc ∼ (γ/γ′)1/4, internal friction will

dominate and correspondingly the relaxation times become q∗-independent and equal to

τc = γ′/B.

VI. SECONDARY RELAXATION IS PRESENT ON SINGLE BOND LEVEL

To get deeper insight into the origin of the slow relaxation we look at three bonded

particles only. Three dipatch particles together form effectively a single dipolar bond

parametrized by a single bending angle θ, see Fig. 4(a). An overdamped elastic dipolar

bond with energy U(θ) = kθθ
2/2 follows the dynamics

θ̇ = −kθ
γθ
θ +

√
2kT

γθ
ξ(t) (4)

where γθ is an effective angular friction coefficient. This equation is completely analogous to

a particle in a harmonic well with the lateral displacement replaced by θ. It is thus similarly

solved by the MSD [7]

〈θ2〉 = 2
(
1− e−t/τθ

) kT
kθ
, (5)

with τθ = γθ/kθ. We track the centers of a three-particle chain for different temperatures

and follow the evolution of the bending angle.

Fig. 4(b) shows the MSD of θ. Interestingly, like the mode dynamics for longer chains,

also the dynamics of single bonds shows two relaxation processes. The initial relaxation fits

well with Eq. 5. The resulting fit parameter kθ divided by kT and multiplied by the particle

diameter d is shown in Fig. 4(c). This ratio dkθ/kT is the persistence length a long chain

consisting of a series of this single bond would have. We first see that the bond rigidity is
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FIG. 4. (a) Model and experimental snapshot of three dipatch particles forming effectively a

single dipolar bond, scalebar 3µm. (b) Mean square displacement of bond angle θ for temperature

∆T = 1.3, 1, 0.7, 0.5 from top to bottom. Blue line is best fitted exponential relaxation on short

timescales. (c) Temperature tuneability of fitted bending rigidity on short (blue) and long (black)

timescales, normalised to correspond to the persistence length of a chain. (d) Fitted short relaxation

time and extracted friction coefficient (inset) with mean value as horizontal line.

tunable with temperature similar to the persistence length of Fig. 5 in the main text. The

absolute value is similar, but slightly lower as before. This difference is not surprising given

the variability of bond stiffnesses due to particle polydispersity. The fitted relaxation time

increases with ∆T , as shown in Fig. 4(d). When we extract γθ we obtain an almost constant

number. The normalised average γθ/d
3 = 16± 1 mPas is comparable to the drag found for

free diffusion and in the mode analysis. From this consistent behaviour we conclude that at

short timescales a single bond shows elastic overdamped dynamics.

On longer timescales a second relaxation occurs. This relaxation does not fit well with

an exponential relaxation (not shown). If we do attempt a fit we obtain a relaxation time

τslow = 15±5s, similar to the slow relaxation for chains. Fig. 4(c) shows the effective bending

rigidity after this second relaxation. Similar to the long chain also this bending rigidity is

temperature tuneable and on the order of a factor two smaller than the short time scale

rigidity.

From the overall similarity between long chain and single bond behaviour we conclude

that the source of the secondary chain relaxation lies at the single bond level. This allows
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FIG. 5. A potential energy landscape that can model a stick-slip process of the bond angle and

qualitatively captures the presence of two bending rigidities Bfast and Bslow.

us to exclude possible collective effects as the origin, such as longer ranged interactions or

hydrodynamic coupling. Furthermore it shows that analysis artifacts due to approximations

during the mode analysis are also not the source. In particular the approximation of cosine

modes as normal modes does introduce a small mode mixing, with components of long

wavelength, slowly decaying modes, also being present in higher modes. Such an artefact

could give rise to an apparent second slow relaxation. However given that the secondary

relaxation is also present for the three chain, where no mode analysis is done, convincingly

shows that this mode mixing artefact is not dominant.

VII. MICROSCOPIC ORIGIN OF NON-ELASTIC RELAXATION

As discussed in the manuscript we speculate that the origin of the internal friction is

a stick-slip like process. The source of these stick-slip dynamics could be heterogeneities

on the surface such as roughness or charge, or the reptation of intertwined F108 polymer

brushes present on the surface. A potential energy landscape that qualitatively captures

such behavior is shown in Fig. 5. A valley represents a fixed contact point, with a effective

spring bending Bfast/d. Due to thermal energy kicks, hopping between valleys can occur

leading to contact slippage, which happens on a timescale τc. This landscape has in addition

a global curvature giving rise to a long time effective bending constant Bfast/d. To further

show that such a contact point diffusion is in principle possible we note that the average

patch size for these particles has been measured directly to be given by a patch arc angle

θp = 0.36rad. The explored angle amplitudes are, even on long time scales smaller, ∼ 0.1rad,

as can be seen from fig. 4(b). If this were not smaller, another mechanism apart from contact
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FIG. 6. (a) Atomic force microscope images zoomed in on the patch of large-patch dipatch particles

(left) and small-patch (right). (b) Mean square displacement of the lowest modes of a N = 13

chain, with exponential relaxation fits on short (blue) and long (red) timescales. (c) Fitted short

time mode variance for an N = 9, N = 12 and N = 13 chain, dotted line is q−2 powerlaw fit. (d)

Lp on short (blue open squares) and long timescales (black open circles), in addition the big patch

values are shown. (e) τfast (blue) and τslow (red) obtained from the exponential fit, dotted line is

a q−4∗ fit

diffusion would have to be invoked. However given that this is lower than θp it is possible

that the explored angle amplitude comes from contact diffusion. There is therefore clearly

enough space on the patch to move around and change contact point.

VIII. DEPENDENCE ON PATCH SIZE

Here, we investigate chains of di-patch particles with smaller patches, but otherwise

identical properties. Their patch arc angle was θp = 14◦(±2) instead of θp = 21◦. Fig. 6(b)

shows the mode mean square displacements of these particles. Also indicated are fits to
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two exponential relaxation processes. The higher acquisition rate of these experiments with

respect to particle A experiments allow to probe smaller ∆t’s and show that also on these

shorter timescales the fast relaxation decay fits well. The resulting amplitude of the fast

relaxation is shown for three different chains in Fig. 6(c). In all cases a q−2 power law

is recovered for wavelengths in an intermediate regime. The extracted persistence lengths

Lslowp = 1500± 250µm, and Lfastp = 2420± 20µm are compared with the persistence length

of the big patch sample, in Fig. 6(d). Interestingly, both after short and long relaxation the

small-patch particle chains exhibit a factor of two higher rigidity.

Fig. 6(e) shows that τfast follows a q−4 dependence from which we fit a drag coefficient of

γ = 73±7cP, very close to the drag coefficient for big patch chains. The slow relaxation time

τslow is within accuracy independent of q, which we average to obtain τc = 12s, shorter than

for the bigger patches. This is consistent with Eq. 7 of the main text, given the fact that

Bslow is bigger. From τc we extract an internal friction coefficient γ′ = 0.8 · 105 mPasµm4.

This value lies within the error margin of the internal friction of the big patch chains.

These observations highlight the different control parameters in this system. Next to

temperature the mechanics of the chains are also tuned by the patch-size, with smaller

patches giving more rigid chains. This effects both the overdamped elastic response on

short timescales as well as the long time relaxation. The internal friction coefficient however

remains unaffected. This indicates that the secondary dissipation mechanism is determined

by features set at a length scale smaller than the patch size. These features could be

roughness or charge heterogeneities on a length scale smaller than the patch size.
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