Supplementary Materials

Structure and dynamics of ions in dipolar solvents: a coarse-grained

simulation study

Jicai Liang^a, Hao Wei^{ab}, Kaifeng Yu^{*a}, Chengjiang Lin^{bc}, Hongfei Li^{bc},

Mingming Ding*d and Xiaozheng Duan*b

^a Key Laboratory of Automobile Materials, Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, Jilin 130025, China. Email:yukf@jlu.edu.cn

^b State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. E-mail: xzduan@ciac.ac.cn

^c School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China.

^{*d*} School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China. E-mail:mmding@gdut.ac.cn

* Corresponding authors.

Fig. S1 Radial distribution functions of dipoles around each cation $[g_{c-d}(r)]$ at different dipole moments (μ^*) , ionic concentrations (c_i) and magnitudes of the external electrostatic field (E^*) . The line colors correspond to the values of the dipole moments. (a) $c_i = 0.5$ [M], $E^* = 0$, (b) $c_i = 0.5$ [M], $E^* = 0.1$, (c) $c_i = 0.5$ [M], $E^* = 0.5$, (d) $c_i = 2.0$ [M], $E^* = 0$, (e) $c_i = 2.0$ [M], $E^* = 0.1$, and (f) $c_i = 2.0$ [M], $E^* = 0.5$.

Fig. S2 Radial distribution functions of dipoles around each dipole $[g_{d-d}(r)]$ at different dipole moments (μ^*) , ionic concentrations (c_i) and magnitudes of the external electrostatic field (E^*) . The line colors

correspond to the values of the dipole moments. (a) $c_i = 0.5$ [M], $E^* = 0$, (b) $c_i = 0.5$ [M], $E^* = 0.1$, (c) $c_i = 0.5$ [M], $E^* = 0.5$, (d) $c_i = 2.0$ [M], $E^* = 0.6$, (e) $c_i = 2.0$ [M], $E^* = 0.1$, and (f) $c_i = 2.0$ [M], $E^* = 0.5$.

Fig. S3 Mean-squared displacement of cations as a function of simulation time. The line colors correspond to the values of the dipole moments. (a) $c_i = 0.5$ [M], $E^* = 0$, (b) $c_i = 0.5$ [M], $E^* = 0.1$, (c) $c_i = 0.5$ [M], $E^* = 0.5$, (d) $c_i = 2.0$ [M], $E^* = 0$, (e) $c_i = 2.0$ [M], $E^* = 0.1$, and (f) $c_i = 2.0$ [M], $E^* = 0.5$.

Fig. S4 Mean-squared displacement of dipoles as a function of simulation time. The line colors correspond to the values of the dipole moments. (a) $c_i = 0.5$ [M], $E^* = 0$, (b) $c_i = 0.5$ [M], $E^* = 0.1$, (c) $c_i = 0.5$ [M], $E^* = 0.5$, (d) $c_i = 2.0$ [M], $E^* = 0.6$ (e) $c_i = 2.0$ [M], $E^* = 0.1$, and (f) $c_i = 2.0$ [M], $E^* = 0.5$.

Fig. S5 The components of Mean-squared displacement of cations in directions parallel to the electric field as a function of simulation time. The line colors correspond to the values of the dipole moments. (a) $c_i = 0.5$ [M], $E^* = 0$, (b) $c_i = 0.5$ [M], $E^* = 0.1$, (c) $c_i = 0.5$ [M], $E^* = 0.5$, (d) $c_i = 2.0$ [M], $E^* = 0$, (e) $c_i = 2.0$ [M], $E^* = 0.1$, and (f) $c_i = 2.0$ [M], $E^* = 0.5$.

Fig. S6 The components of Mean-squared displacement of cations in directions vertical to the electric field as a function of simulation time. The line colors correspond to the values of the dipole moments. (a) $c_i =$

0.5 [M], $E^* = 0$, (b) $c_i = 0.5$ [M], $E^* = 0.1$, (c) $c_i = 0.5$ [M], $E^* = 0.5$, (d) $c_i = 2.0$ [M], $E^* = 0$, (e) $c_i = 2.0$ [M], $E^* = 0.1$, and (f) $c_i = 2.0$ [M], $E^* = 0.5$.

Fig. S7 The components of Mean-squared displacement of dipoles in directions parallel to the electric field as a function of simulation time. The line colors correspond to the values of the dipole moments. (a) $c_i = 0.5$ [M], $E^* = 0$, (b) $c_i = 0.5$ [M], $E^* = 0.1$, (c) $c_i = 0.5$ [M], $E^* = 0.5$, (d) $c_i = 2.0$ [M], $E^* = 0$, (e) $c_i = 2.0$ [M], $E^* = 0.1$, and (f) $c_i = 2.0$ [M], $E^* = 0.5$.

Fig. S8 The components of Mean-squared displacement of dipoles in directions vertical to the electric field as a function of simulation time. The line colors correspond to the values of the dipole moments. (a) $c_i =$

0.5 [M], $E^* = 0$, (b) $c_i = 0.5$ [M], $E^* = 0.1$, (c) $c_i = 0.5$ [M], $E^* = 0.5$, (d) $c_i = 2.0$ [M], $E^* = 0$, (e) $c_i = 2.0$ [M], $E^* = 0.1$, and (f) $c_i = 2.0$ [M], $E^* = 0.5$.