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S1. Theoretical Models 
 
 
S1.1 Wenzel wetting state 

 

This model describes the homogeneous wettability regime of a rough surface, which happens when 

the liquid penetrates into the asperities and interstices of the surface, making contact with the base 

of the protrusions. This wetting regime is described by the equation:1 

cos(𝜃) = 𝑟 cos 𝜃!  

Where 𝜃 is the apparent CA of the surface which corresponds to a stable equilibrium state, which 

means a minimum energy state for the rough surface system. While 𝜃!, is the contact angle for the 

smooth surface and is calculated using the Young equation.2 The roughness ratio, 𝑟, is a measure of 

how roughness affects the wetting behavior of the surface. The roughness ratio is calculated as the 

ratio of real solid/liquid contact area to the apparent or projected solid/liquid interface. So, for a rough 

surface, 𝑟 > 1.  

This model indicates that the roughness of a surface intensifies its intrinsic wetting behavior which 

depends on its chemical nature and intermolecular forces. In other words, a hydrophobic smooth 

surface (𝜃! > 90°) will be more hydrophobic (will have greater CA) as the roughness ratio increases. 

On the other hand, a hydrophilic surface (𝜃! < 90°) will be more hydrophilic (lower CA) as the 

roughness ratio magnifies. Nevertheless, it is important to mention that SHS under Wenzel wetting 

state have not been reported, indicating a limitation of the Wenzel model. 
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S1.2 Cassie-Baxter Wetting state 

In the case of a heterogeneous wetting state, due to air-pockets trapped in the asperities of a rough 

surface, the Wenzel equation becomes insufficient, on account of the necessity of a model that 

measure the apparent CA when several materials are involved. When a liquid propagates over a 

surface the original interface is destroyed. This process implies the increment or decrement of the 

total free energy of the system in order to overcome the surface free energy. The liquid propagation 

will extend until reach a state of minimum energy.3,4 A heterogeneous interface can be obtained if a 

state of minimum energy is reached before the penetration of the liquid into the asperities of rough 

surfaces. This wetting state can be described by the Cassie-Baxter model:5 

cos(𝜃) =𝜙 cos(𝜃!) + 𝜙 − 1  

Where 𝜙 is the fraction of projected solid area in contact with the liquid, whose calculation for the 

case of square pillars in a regular array can be observed in Figure S1. The Cassie-Baxter model 

represents an approximation of the real CA and can present great deviations and imprecisions, so its 

utilization is reliable for some specific geometries.6–8 In the hypothetical case that 𝜙 = 0, the 𝜃 value 

becomes 180°, which theoretically means that the reduction of the solid/liquid contact area promotes 

the superhydrophobic properties. When a heterogeneous wetting state (Cassie-Baxter state) is 

destroyed and turns into a homogeneous wetting state (Wenzel state), is improbable that the system 

recovers its heterogeneous interface due to the great amount of activation energy needed for the 

transition.9 
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Fig. S1. Definition of the fraction of solid/liquid contact area, 𝜙. 

 

S1.3 Nagayama et al. model for intermediate wetting state 

The wetting state of a system is commonly described by the static CA o CAH, putting aside the real 

wetting regime of the surface, which can be different from the Wenzel and Cassie-Baxter states.  

Nagayama et al.10 developed a wetting model that includes the description of the intermediate wetting 

state between homogeneous (Wenzel) and heterogeneous (Cassie-Baxter) wetting regime for a rough 

surface. This model is based on a thermodynamic method of minimization of energy. This 

intermediate wetting state has been reported and has been observed on the surface of lotus.11 The CA 

based on the intermediate wetting model depends of the geometrical parameters and a new factor, 𝑓, 

called effective wetting ratio. This ratio can have values between 0 and 1. Further, agrees with the 

classical Wenzel and Cassie-Baxter models for 𝑓 = 1  and 𝑓 = 0 , respectively. Furthermore, 

determines the proportion of liquid that wets into the rough surface. 

The equation proposed in this model to describe the wetting phenomena arise from a method of 

minimization of surface free energy and the classical Young, Wenzel and Cassie-Baxter equations. 

The Nagayama et al. model is shown below:  
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cos 𝜃 = 𝜙"# cos 𝜃! + 𝜙#$ cos 180° 

Where 𝜙"# and 𝜙#$ are the ratio of real solid/ liquid and liquid/vapor contact area with respect to the 

projected area, respectively. The ratios are the defined as: 

𝜙"# = 𝜙 + (𝑟 − 𝜙)𝑓  

𝜙#$ = (1 − 𝜙)(1 − 𝑓) 

 

Where 𝑟 is the roughness ratio that comes from the Wenzel model, and is calculated as the area ratio 

of real solid/liquid interface to flat surface, as mentioned before (see Section S1.1).  

For 𝑓 = 1, 𝜙"# becomes equal to 𝑟, while 𝜙#$ becomes 0, which is in good agreement with Wenzel 

state due to the absence of trapped air-pockets between the liquid and the surface. On the other hand, 

for 𝑓 = 0, 𝜙"# becomes equal to 𝜙, while 𝜙#$ becomes 1 − 𝜙, which agrees with the Cassie-Baxter 

model. In contrast, when 0 < 𝑓 < 1, an intermediate wetting state is observed, while 𝜙 < 𝜙"# < 𝑟% , 

and 0 < 𝜙#$ < 1 − 𝜙. 

The effective wetting ratio, 𝑓, is calculated empirically as shown: 

𝑓 = 1 − 𝜙&'( 

Where 𝐷, is the fractal dimension of the system obtained from gray scale images using a box counting 

method. In Nagayama et al. work, the fractal dimension took a value of 2.4 for a porous silicon 

structure. In contrast, the fractal dimension calculated for a patterned microstructured silicon surface 

was 2.2. 

It is noteworthy the great range of potential application of the model, that includes the Wenzel and 

Cassie-Baxter states, as well as the intermediate state 
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Table S1. Static, advancing, receding, and hysteresis contact Angles (in deg.) corresponding to silanized 
micro-PLS, 3D printed at two orientations (tilted and horizontal), and at three resolutions (low, medium, 
and high). 

Tag qS qA qR qH  Tag qS qA qR qH 

TH_flat 112 ± 1 a) 125 ± 1 a) 63 ± 1 a) 63 ± 1 a)  FH_flat 108 ± 1 a) 126 ± 1 a) 49 ± 1 a) 77 ± 1 a) 
TH_cylinder 146 ± 1 73 ± 1 45 ± 1 a) 28 ± 1 a)  FH_cylinder 128 ± 1 a) 136 ± 3 a) 88 ± 1 a) 47 ± 1 
TH_cone 157 ± 1 170 ± 2 153 ± 1 17 ± 1  FH_cone 146 ± 2 154 ± 1 118 ± 1 a) 35 ± 1 
TH_tulip 150 ± 1 157 ± 2 142 ± 1 15 ± 1  FH_tulip 154 ± 1 155 ± 1 136 ± 1 19 ± 1 
TH_mushroom 150 ± 1 163 ± 1 140 ± 1 23 ± 1  FH_mushroom 152 ± 1 156 ± 1 144 ± 2 12 ± 1 
TH_M. mouse 152 ± 1 166 ± 1 107 ± 1 a) 59 ± 1  FH_M. mouse 147 ± 1 165 ± 3 124 ± 1 a) 41 ± 2 
TH_cubic 157 ± 2 159 ± 2 121 ± 3 a) 38 ± 2  FH_cubic 144 ± 4 147 ± 1 127 ± 1 a) 19 ± 1 
TH_pyramid 155 ± 1 165 ± 2 134 ± 4 a) 31 ± 3  FH_pyramid 160 ± 4 163 ± 2 149 ± 5 14 ± 3 
TH_spiral 152 ± 1 159 ± 1 151 ± 4 8 ± 3  FH_spiral 154 ± 1 165 ± 3 126 ± 2 a) 19 ± 2 
TH_sphere 154 ± 1 172 ± 1 143 ± 1 29 ± 1  FH_sphere 148 ± 1 151 ± 1 130 ± 1 21 ± 1 
TH_pine 139 ± 1 a) 162 ± 2 a) 113 ± 2 a) 49 ± 2 a)  FH_pine 150 ± 1 140 ± 3 a) 70 ± 2 a) 70 ± 2 
TM_flat 113 ± 1 a) 115 ± 1 a) 64 ± 4 a) 50 ± 3 a)  FM_flat 122 ± 4 a) 127 ± 2 a) 60 ± 2 a) 67 ± 2 a) 
TM_cylinder 137 ± 1 a) 110 ± 3 a) 64 ± 4 a) 46 ± 3 a)  FM_cylinder 120 ± 1 a) 111 ± 2 a) 63 ± 6 a) 47 ± 4 
TM_cone 155 ± 1 156 ± 2 128 ± 6 a) 28 ± 4  FM_cone 158 ± 2 157 ± 3 66 ± 1 a) 91 ± 2 
TM_tulip 151 ± 1 168 ± 2 145 ± 3 23 ± 3  FM_tulip 144 ± 1 152 ± 3 120 ± 1 a) 31 ± 2 
TM_mushroom 152 ± 3 164 ± 2 142 ± 4 22 ± 3  FM_mushroom 148 ± 1 159 ± 2 132 ± 1 27 ± 2 
TM_M. mouse 164 ± 1 170 ± 2 146 ± 1 24 ± 2  FM_M. mouse 147 ± 1 166 ± 5 137 ± 1 16 ± 3 
TM_cubic 160 ± 3 167 ± 2 157 ± 3 10 ± 2  FM_cubic 145 ± 3 156 ± 4 115 ± 1 a) 40 ± 3 
TM_pyramid 157 ± 3 168 ± 2 156 ± 4 12 ± 3  FM_pyramid 153 ± 2 165 ± 2 146 ± 2 19 ± 2 
TM_spiral 154 ± 1 164 ± 1 149 ± 6 15 ± 4  FM_spiral 144 ± 1 166 ± 2 114 ± 2 a) 53 ± 2 
TM_sphere 151 ± 1 167 ± 2 147 ± 1 20 ± 1  FM_sphere 145 ± 1 164 ± 2 134 ± 1 a) 29 ± 2 
TM_pine 147 ± 1 111 ± 1 a) 64 ± 4 a) 47 ± 3 a)  FM_pine 128 ± 1 a) 165 ± 3 a) 75 ± 6 a) 90 ± 4 
TL_flat 127 ± 1 a) 135 ± 1 a) 85 ± a) 1 50 ± 1 a)  FL_flat 105 ± 1 a) 105 ± 1 a) 46 ± 2 a) 60 ± 2 
TL_cylinder 134 ± 1 a) 127 ± 3 a) 78 ± 1 a) 49 ± 2 a)  FL_cylinder 154 ± 1 99 ± 1 a) 95 ± 1 a) 4 ± 1 
TL_cone 159 ± 3 151 ± 1 a) 92 ± 1 a) 59 ± 1 a)  FL_cone 156 ± 4 166 ± 3 129 ± 3 a) 37 ± 3 
TL_tulip 166 ± 1 171 ± 1 142 ± 2 29 ± 1  FL_tulip 147 ± 1 165 ± 4 134 ± 3 a) 31 ± 3 
TL_mushroom 152 ± 1 156 ± 1 144 ± 4 12 ± 3  FL_mushroom 149 ± 1 154 ± 1 132 ± 1 a) 23 ± 1 
TL_M. mouse 156 ± 1 152 ± 1 111 ± 4 a) 41 ± 3 a)  FL_M. mouse 149 ± 1 155 ± 4 127 ± 8 a) 28 ± 6 
TL_cubic 152 ± 1 168 ± 2 124 ± 1 a) 44 ± 2 a)  FL_cubic 145 ± 1 155 ± 1 107 ± 3 a) 48 ± 2 
TL_pyramid 156 ± 1 165 ± 2 56 ± 3 a) 109 ± 3 a)  FL_pyramid 157 ± 1 157 ± 2 136 ± 2 20 ± 2 
TL_spiral 151 ± 1 160 ± 1 51 ± 3 a) 110 ± 2 a)  FL_spiral 154 ± 1 168 ± 2 105 ± 1 a) 63 ± 1 
TL_sphere 154 ± 1 159 ± 1 129 ± 1 a)  30 ± 1  FL_sphere 155 ± 1 155 ± 2 107 ± 1 a) 48 ± 1 
TL_pine 108 ± 2 a) 117 ± 1 a) 78 ± 1 a) 39 ± 1  a)  FL_pine 128 ± 3 a) 133 ± 1 a) 120 ± 1 a) 13 ± 1 

a) Wenzel regimen; qs = static CA; qA = advancing CA; qR = receding CA; qH = hysteresis CA, measured by the increment-decrement method. 
Printing orientation: T = tilted, F = flat (horizontal) 
Printing resolution: H, M, L = high, medium and low, respectively. 
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Fig. S2. Micrographs by SEM and their CAs values corresponding to silanized µ-PLS 3D 
printed at medium resolution: a) horizontal orientation, b) tilted orientation.   
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Fig. S3. a) Micrographs by SEM of silanized micro-PLS 3D-printed at tilted orientation and 
three printing resolutions (low, medium, and high), corresponding to geometrical shapes like a 
pine, cylindrical, and flat surfaces. b) Contact angle pictures corresponding to static, advancing, 
and receding contact angles. This behavior was observed regardless of the printing resolution. 
 
 

Geometrical shapes with a sharp shape (pine) or with a cylindrical shape did not show a Cassie-

Baxter regimen when the contact angles were measured. Nonetheless, they supported the 

droplet, which showed good sphericity to get a value of static CAs. When the size of the droplet 

was increased to measure the advancing CAs, it touched the base surface to reach the Wenzel 

regimen, as shown in Fig. S1b. Flat surfaces exhibited a Wenzel regimen regardless of the 

printing resolution.  
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