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MODEL AND METHODS: DETAILS

We give here additional details related to the poly-
mer/nanoprobe model used in this work (Sec. S1) and
the computational effort required for the simulations
(Sec. S2). Then, we conclude (Sec. S3) by describing
the mathematical details beyond the calculation of some
observables considered in this work.

S1. COMPUTATIONAL MODEL FOR
POLYMERS AND NANOPROBES

Polymer-polymer interactions consist of the following
three terms:

(i) The potential energy term accounting for
monomer-monomer excluded volume interac-
tions, which is expressed by the shifted and
truncated Lennard-Jones (LJ) function:

ULJ(r) =

{
4ε
[(
σ
r

)12 −
(
σ
r

)6
+ 1

4

]
r ≤ rc

0 r > rc
. (S1)

Here, r is the spatial distance between monomers
and the chosen cut-off distance rc/σ = 21/6 ensures
that only purely repulsive monomer-monomer in-
teractions are effectively taken into account. The
parameters ε and σ fix the energy and length scales
units, respectively.

(ii) The bond potential between monomers which are
nearest-neighbours along the same polymer chain,
which is expressed by the so called finitely extensi-
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male Supérieure, Paris, France.
† jan.smrek@univie.ac.at
‡ anrosa@sissa.it

ble non-linear elastic potential (FENE):

UFENE(r) =

{
− 1

2 κFENER
2
0 log

(
1− (r/R0)

2
)

r ≤ R0

∞ r > R0

.

(S2)
Here, κFENE σ

2/ε = 30 is the spring constant and
R0/σ = 1.5 is the maximum extension of the elastic
FENE bond.

(iii) The bending energy term controlling polymer stiff-
ness, which is expressed by the following function:

Ubend(θ) = κbend

(
1− (~ri+1 − ~ri) · (~ri − ~ri−1)

|~ri+1 − ~ri| |~ri − ~ri−1|

)
. (S3)

Here, ~ri is the coordinate of the i-th monomer along
each given chain, numbered from one of the ter-
mini (for linear chains) or from an arbitrarily cho-
sen monomer (for rings). In the latter case, peri-
odic boundary conditions along the ring are tacitly
assumed. The bending constant κbend/ε = 5, cor-
responding to a Kuhn [1, 2] segment `K/σ = 10 [3].

The polymer solutions are accompanied by the pres-
ence of nanoprobes of different diameters. In order to
model the nanoprobe-nanoprobe and nanoprobe-polymer
interactions, we have resorted to the phenomenological
expressions introduced by Everaers and Ejtehadi [4] and
employed in previous works [5–8]. In particular:

(iv) Nanoprobe-nanoprobe (nn) interactions are de-
scribed by the expression:

{
Unn(r) = UAnn(r) + URnn(r) r ≤ rnn

0 r > rnn
. (S4)

UAnn(r) is the attractive contribution given by

UAnn(r) = −Ann

6

[
2a2

r2 − 4a2
+

2a2

r2
+ ln

(
r2 − 4a2

r2

)]
,

(S5)
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Quantity Value

Correlation length, ξ/σ 1.4
Entanglement length, Le/σ 11.0

Tube diameter, dT /σ 4.3
Entanglement time, τe/τMD 490.0

TABLE S1. List of relevant length and time scales describing
the microscopic properties of the polymer solution: (i) The
correlation length, ξ, is defined as the average spatial dis-
tance from a monomer on one chain to the nearest monomer
on another chain [2] and it is a measure of the packing of
the solution; (ii) The entanglement length, Le, can be defined
as the contour length along a single chain which spans be-
tween close-by entanglement points in the solution [10, 11];
(iii) The tube diameter, dT ≈

√
`KLe, measures the average

span in length between close entanglement points along the
same chain [10, 11]; (iv) The entanglement time, τe, is the
average time for a monomer to explore by random motion a
portion of the solution of linear size = dT [10, 11].

while UBnn(r) is the repulsive term

UBnn(r) =
Ann

37800

σ6

r

[
r2 − 14ar + 54a2

(r − 2a)
7 +

r2 + 14ar + 54a2

(r + 2a)
7 − 2

r2 − 30a2

r7

]
. (S6)

Here, Ann/ε = 39.478 and we consider non-sticky,
athermal probe particles with diameters d/σ ≡
2a/σ = 2.5, 5.0, 7.5 corresponding to fix rnn/σ =
3.08, 5.60, 8.08. As explained in great detail in
Ref. [7] these nanoprobe diameters have been cho-
sen because (a) they are larger than the correlation
length [2] ξ/σ ≈ 1.4 of the polymer solution while,
at the same time, (b) they are able to span the en-
tire range from below to above the estimated value
dT /σ ≈ 4.3 of the tube diameter (see Table S1 for an
overview of the physical property of the polymer so-
lutions employed here). In this way, (a) polymer ef-
fects on nanoprobe displacement dominate [9] over
thermal effects caused by the solvent and (b) the
role of entanglements on nanoprobe motion can be
explored more systematically.

(v) Finally, the monomer-nanoprobe (mn) interaction
is accounted for by:

{
Umn(r) = 2a3σ3Amn

9(a2−r2)3

[
1− 5a6+45a4r2+63a2r4+15r6

15(a−r)6(a+r)6

]
r ≤ rmn

0 r > rmn

(S7)
where Amn/ε = 75.358 and rmn/σ =
2.11, 3.36, 4.61.

S2. MOLECULAR DYNAMICS RUNS

As explained in the main text, we have performed
Langevin molecular dynamics for a polymer system made
of M = 80 chains of N = 500 beads each and Nnp = 100
nanoprobes dispersed in the solution. Simulations were
performed by using the LAMMPS package [12]. Half of
the chains are coupled to a thermostat with “room” tem-
perature Tc = T ≡ ε/kB (kB being the Boltzmann con-
stant) and the other half are coupled to a “hotter” ther-
mostat with temperature Th/Tc > 1. The nanoprobes
are always coupled to the cold thermostat. By defining
the “reduced” temperature gap ∆t ≡ Th/Tc− 1, we have
considered systems with Th/Tc = 1.5 or ∆t = 0.5 and
Th/Th = 2.0 or ∆t = 1.0. Then, we have compared the
properties of these systems to those for “purely passive”
solutions with Th/Tc = 1.0 or ∆t = 0.0.

Polymers/nanoprobes mixtures are prepared and then
let equilibrate under purely passive conditions according
to the protocol described in detail in Ref. [7]. Start-
ing from these equilibrated systems, half of the chains
are then driven out of equilibrium by the coupling to
the hot thermostat. The total length of each MD run
is ≈ 4 · 109 integration time steps τint (with our choice
τint/τMD = 0.006, this is equivalent to about ≈ 2.4 · 107

MD Lennard-Jones time units). System configurations
are sampled each 105 τint = 600 τMD: in order to remove
possible artifacts due to the initial preparation of the
samples, all the analyses reported in this work have been
performed after discarding the first 5·107 τint = 3·105 τMD

of each trajectory. For completeness and in order to in-
vestigate smaller time scales, we have also performed ad-
ditional runs of total length ≈ 2 · 106 τint = 1.2 · 104 τMD

with reduced sampling time of 100 τint = 0.6 τMD.
As shown in Fig. S1, the runs are long enough for the

mean-square displacement to be above the squared gyra-
tion radius. This is typically long enough to achieve the
complete relaxation of polymer systems, see Ref. [13].
Table S2 summarizes the average temperature of the
nanoprobes, 〈Tnp〉, and the average temperatures of the
monomers of cold and hot chains, 〈Tch〉c,h, after the com-
plete relaxation of the corresponding systems. It reports
also the corresponding values for the “temperature asym-
metry” order parameters (see Ref. [14]) for hot chains

with respect to nanoprobes (χhnp ≡ 〈Tch〉h
〈Tnp〉 − 1) and for

hot chains w.r.t. cold chains (χhc ≡ 〈Tch〉h
〈Tch〉c − 1).

In addition, we have performed a different run (of total
length = 1.2 · 107 τMD) for a fully passive systems of ring
polymers and large nanoprobe with diameter d/σ = 7.5.
The system and numerical details are as before: the only
exception is that now the bending stiffness of 50% of the
chain population is as before (κbend/ε = 5.0, see Sec. S1
here) while the remaining 50% of rings are twice more
flexible with κbend/ε = 2.5. By this protocol, the average
chain sizes of the two populations of rings “fit” the sizes
found for passive/active mixtures at ∆t = 1.0 (see inset
in Fig. 3 in the main paper).
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Linear Polymers Ring Polymers

d/σ ∆t 〈Tnp〉 〈Tch〉c 〈Tch〉h χhnp χhc 〈Tnp〉 〈Tch〉c 〈Tch〉h χhnp χhc

0.0 1.005± 0.073 1.000± 0.005 1.000± 0.005 ≈ 5 · 10−2 . 10−3 1.030± 0.082 1.000± 0.005 1.000± 0.005 ≈ 3 · 10−2 . 10−3

2.5 0.5 1.200± 0.100 1.067± 0.006 1.432± 0.007 0.19± 0.02 0.342± 0.004 1.199± 0.094 1.059± 0.006 1.438± 0.008 0.20± 0.02 0.358± 0.004

1.0 1.376± 0.119 1.127± 0.007 1.870± 0.011 0.36± 0.03 0.658± 0.008 1.359± 0.112 1.122± 0.007 1.877± 0.010 0.38± 0.03 0.672± 0.008

0.0 1.009± 0.087 1.000± 0.006 1.000± 0.006 ≈ 1 · 10−2 . 10−3 1.020± 0.083 1.000± 0.006 1.000± 0.006 ≈ 2 · 10−2 . 10−3

5.0 0.5 1.191± 0.105 1.069± 0.006 1.431± 0.008 0.20± 0.02 0.339± 0.004 1.183± 0.104 1.060± 0.006 1.441± 0.009 0.22± 0.02 0.360± 0.004

1.0 1.348± 0.100 1.138± 0.007 1.860± 0.012 0.38± 0.03 0.635± 0.008 1.323± 0.087 1.124± 0.007 1.877± 0.011 0.42± 0.03 0.669± 0.008

0.0 1.004± 0.076 0.999± 0.005 0.999± 0.005 ≈ 4 · 10−3 . 10−3 1.000± 0.077 1.000± 0.005 1.000± 0.005 . 10−3 . 10−3

7.5 0.5 1.172± 0.093 1.075± 0.006 1.424± 0.008 0.21± 0.02 0.324± 0.004 1.120± 0.090 1.064± 0.007 1.436± 0.008 0.28± 0.02 0.349± 0.004

1.0 1.292± 0.107 1.144± 0.007 1.856± 0.011 0.44± 0.04 0.623± 0.007 1.163± 0.095 1.125± 0.007 1.875± 0.011 0.61± 0.05 0.667± 0.008

TABLE S2. Summary of average temperatures for nanoprobes (〈Tnp〉) and for individual monomers of cold and hot chains
(〈Tch〉c,h), and corresponding “temperature asymmetry” order parameters for hot chains with respect to nanoprobes (χhnp ≡
〈Tch〉h
〈Tnp〉 − 1) and for hot chains w.r.t. cold chains (χhc ≡ 〈Tch〉h

〈Tch〉c − 1). Temperatures are measured in the course of the simulations

by the LAMMPS [12] numerical engine used for this work (see Sec. S2). d is the nanoprobe diameter and ∆t is the reduced
temperature gap introduced in the system (see the main text and Sec. S2 for details).

S3. OBSERVABLES AND MEASURED
PROPERTIES: DEFINITIONS

1. Single-chain structure

Let us define Om(t), the value of the generic observ-
able O referring to the m-th chain in the solution and
evaluated at time step t of a given MD run of total run-
time = TMD. Its mean value, 〈O〉c,h, is defined by the
formula:

〈O〉c,h ≡ 1

M/2

M/2∑

m=1

c,h 1

t∗

∫ TMD

TMD−t∗
Om(t) dt , (S8)

where: (a) t∗ corresponds to the time scale above which
chains, having diffused more than their own size, have
reached the steady state (see Fig. S1); (b) the subscripts
on the brackets 〈·〉c,h mean that separate averages have
been taken for the two chain populations coupled to the
two thermostats. In analogous manner, distinct averages
have been considered in the case of chains with different
flexibilities (Sec. S2).

In this work, we have considered the following single-
chain observables for which we have computed corre-
sponding mean values according to the definition (S8):
(i) The square gyration radius of a polymer chain made
of N monomers, defined by:

R2
g(t) ≡

1

N

N∑

i=1

(~ri(t)− ~rcm(t))2 , (S9)

where: (a) ~ri(t) is the spatial position of the i-
th monomer of the chain at time t; (b) ~rcm(t) ≡
1
N

∑N
i=1 ~ri(t) is the position of the center of mass of the

Linear Polymers Ring Polymers

d/σ ∆t 〈R2
g〉h 〈R2

g〉c 〈R2
g〉h 〈R2

g〉c

0.0 700.5± 62.7 167.7± 9.2
2.5 0.5 488.2± 32.5 615.2± 44.9 139.2± 7.5 170.4± 10.5

1.0 391.7± 31.4 574.8± 47.8 128.7± 6.3 181.5± 10.0

0.0 690.9± 52.1 169.1± 9.4
5.0 0.5 486.8± 36.1 583.5± 41.4 138.1± 7.6 177.4± 10.0

1.0 386.9± 28.5 576.6± 43.0 132.2± 7.6 189.0± 11.5

0.0 653.0± 39.7 174.7± 10.4
7.5 0.5 451.6± 33.2 577.7± 44.0 137.3± 7.5 193.6± 12.6

1.0 368.6± 30.3 581.8± 43.8 129.6± 6.6 248.5± 9.4

TABLE S3. Mean-square gyration radii corresponding to the
different chain population considered in this work. The su-
perscript “c” (respectively, “h”) is for “cold” (resp. “hot”)
chains in the melt. d is the nanoprobe diameter and ∆t is
the reduced temperature gap introduced in the system (see
the main text and Sec. S2 for details). ∆t = 0 is for classical
passive melts and one single value is reported.

chain. The mean-square gyration radii for the different
chain populations are reproduced in Table S3.
(ii) The average square end-to-end distance between two
monomers at given contour length separation ` ∈ [σ, (N−
1)σ] along the chain, defined by:

R2(` ≡ nσ; t) ≡ 1

N − n
N−n∑

i=1

(~ri+n(t)− ~ri(t))2 , (S10)

where σ is the average bond length (see Sec. S1). Def-
inition (S10) works for linear chains, the generalization
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to rings (where ` ∈ [σ,Nσ/2]) is obtained by taking into
account the obvious periodicity along the contour length
of the chain.

2. Nanoprobe dynamics

To quantify the dynamics of single nanoprobes im-
mersed in polymer solutions, we introduce the mean-
square displacement, ∆r2

np,i(T ; τ), for the i-th nanoprobe
(i = 1, ..., Nnp = 100) as a function of the lag-time τ and
the measurement time T [7, 8, 15]:

∆r2
np,i(T ; τ) ≡ 1

T − τ

∫ T −τ

0

(~ri(t+ τ)− ~ri(t))2
dt ,

(S11)
with ~ri(t) being the spatial position of the i-th nanoprobe
at time t. By tacitly assuming that the simulated trajec-
tories are long enough such that the “T → ∞” limit
is effectively reached, the time average mean-square dis-
placement is formally given by:

∆r2
np,i(τ) ≡ lim

T→∞
∆r2

np,i(T ; τ) . (S12)

The average over the ensemble of Nnp nanoprobes is then
given by:

〈∆r2
np(τ)〉 ≡ 1

Nnp

Nnp∑

i=1

∆r2
np,i(τ) . (S13)

In ergodic systems, Eq. (S12) should of course be in-
dependent from i. This, however, might not be the case
whenever dynamics is affected by long-range spatial cor-
relations as in glassy entangled polymer systems [15, 16]
or polymer nanocomposites [7, 8]. To detect such effects,
we have measured the following ratios:

∆r2
np,i(T ; τ) / 〈∆r2

np(τ)〉 (i = 1, ..., Nnp) . (S14)

Plots of the quantity Eq. (S14) are shown in Fig. S7.

Finally, motivated by the biased displacement orien-
tation and following previous work [7, 8], we measure
also the so called van-Hove [17] distribution function,
P (τ ; ∆x), of the Cartesian components (α = x, y, z) of
nanoprobe spatial displacements for given lag-time τ :

P (τ ; ∆x) ≡ 〈δ[(rα(t+ τ)− rα(t))−∆x]〉 , (S15)

where δ is the Dirac’s δ-function. For ordinary diffusion

processes P (τ ; ∆x) = 1√
2π〈∆x2〉

exp
(
− ∆x2

2〈∆x2〉

)
is Gaus-

sian, while correlated motion (i.e., the one arising most
typically in glassy and complex fluids [15, 17]) displays
distributions with heavy tails. Results for P (τ ; ∆x) are
shown in Fig. S8.

3. Single-chain dynamics

Similarly to Eqs. (S11) and (S12), we have considered
the mean-square displacement, g3,m(τ) [1, 18], of the cen-
tre of mass of the m-th chain in the solution:

g3,m(τ) = lim
T→∞

1

T − τ

∫ T −τ

0

(~rcm,m(t+ τ)− ~rcm,m(t))
2
dt ,

(S16)
where ~rcm,m(t) is the coordinate of the centre of mass of
the m-th chain. As in static quantities (Sec. S3 1), we
take distinct averages of Eq. (S16) for the two polymer
populations with the cold/hot thermostat (see Fig. S1):

gc,h
3 (τ) =

1

M/2

M/2∑

m=1

c,h
g3,m(τ) . (S17)



5

[1] M. Doi and S. F. Edwards, The Theory of Polymer Dy-
namics (Oxford University Press, New York, 1986).

[2] M. Rubinstein and R. H. Colby, Polymer Physics (Oxford
University Press, New York, 2003).

[3] A. Rosa and R. Everaers, Plos Comput. Biol. 4, e1000153
(2008).

[4] R. Everaers and M. R. Ejtehadi, Phys. Rev. E 67, 041710
(2003).

[5] M. Valet and A. Rosa, J. Chem. Phys. 141, 245101
(2014).

[6] N. Nahali and A. Rosa, J. Phys.-Condens. Matter 28,
065101 (2016).

[7] N. Nahali and A. Rosa, J. Chem. Phys. 148, 194902
(2018).

[8] A. Papale and A. Rosa, Phys. Biol. 16, 066002 (2019).
[9] T. Ge, J. T. Kalathi, J. D. Halverson, G. S. Grest, and

M. Rubinstein, Macromolecules 50, 1749 (2017).
[10] R. Everaers, S. K. Sukumaran, G. S. Grest, C. Svaneborg,

A. Sivasubramanian, and K. Kremer, Science 303, 823
(2004).

[11] N. Uchida, G. S. Grest, and R. Everaers, J. Chem. Phys.
128, 044902 (2008).

[12] S. Plimpton, J. Comp. Phys. 117, 1 (1995).
[13] J. D. Halverson, W. B. Lee, G. S. Grest, A. Y. Grosberg,

and K. Kremer, J. Chem. Phys. 134, 204905 (2011).
[14] J. Smrek and K. Kremer, Phys. Rev. Lett. 118, 098002

(2017).
[15] D. Michieletto, N. Nahali, and A. Rosa, Phys. Rev. Lett.

119, 197801 (2017).
[16] J. Smrek, I. Chubak, C. N. Likos, and K. Kremer, Nat.

Commun. 11, 26 (2020).
[17] P. Chaudhuri, L. Berthier, and W. Kob, Phys. Rev. Lett.

99, 060604 (2007).
[18] K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057

(1990).
[19] C. Svaneborg and R. Everaers, Macromolecules 53, 1917

(2020).
[20] Y. Rabin and A. Y. Grosberg, Macromolecules 52, 6927

(2019).



6

200

300

400

500

600

700

800

900

1000

〈R
2 g
(τ
)〉
[σ

2
]

© ∆t = 0.0

�/� ∆t = 0.5 (cold/hot)

△/N ∆t = 1.0 (cold/hot)

200

300

400

500

600

700

800

900

1000

〈R
2 g
(τ
)〉
[σ

2
]

200

300

400

500

600

700

800

900

1000

100 101 102 103 104

〈R
2 g
(τ
)〉
[σ

2
]

g3(τ) [σ
2]

50

100

150

200

250

300

50

100

150

200

250

300

50

100

150

200

250

300

100 101 102 103 104

g3(τ) [σ
2]

Linear Polymers

d = 2.5σ

d = 5.0σ

d = 7.5σ

Ring Polymers

d = 2.5σ

d = 5.0σ

d = 7.5σ

FIG. S1. Parametric plot of the time evolution of the chain mean-square gyration radius, 〈R2
g(τ)〉 (average of Eq. (S9) on the

ensemble of chains coupled to the same temperature T for the single MD snapshot at time τ), as a function of the mean-square
displacement, g3(τ) (Eq. (S17)), of the chain center of mass. The black dashed lines mark the positions where g3 = 〈R2

g〉,
hence points to the right of the line demonstrate that the systems were run long enough to reach polymer displacements larger
than the chain average gyration radius. Color code is as in the main paper, with different colors corresponding to reduced
temperatures ∆t = 0.0, 0.5, 1.0. Open/full symbols correspond to chains coupled to the cold/hot thermostat in passive/active
mixtures (see legend).
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FIG. S2. 〈∆r2
np(τ)〉ring/〈∆r2

np(τ)〉lin, ratios of nanoprobe mean-square displacements (Eq. (S13)) in rings vs. linear polymer
solutions. Results for increasing nanoprobe diameters d (from top to bottom). Color code is as in the rest of the paper.
Although diffusion in ring solutions is always larger than diffusion in linear solutions, for d = 2.5σ and d = 5.0σ we notice
a small yet clearly visible slow-down of the nanoprobes at increasing ∆t. Since the measured average temperatures of the
nanoprobes are the same for the same ∆t (i.e., they do not depend on polymer architecture, see Table S2), we are tempted to
ascribe this effect to the dependence of entanglements on chain flexibility [11, 19]. In fact, in active-passive mixtures hot and
cold chains of linear solutions are both more flexible than chains in fully passive counterparts (Figs. S3 and S4, l.h.s. panels)
while in ring solutions (Fig. S3 and S4, r.h.s. panels) only hot chains bend more: since more/less flexible chains are in general
associated to less/more entangled polymers [11, 19] this may finally account [9, 20] for the seen acceleration/deceleration of
the nanoprobes. On the other hand, this explanation sits on a definition of “entanglements” introduced and validated only for
equilibrium system: if it remains valid for out-of-equilibrium polymer solutions remains to be established, and more systematic
investigations ought to be pursued in the future in this respect.
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FIG. S3. 〈R2(`)〉/`, mean-square end-to-end distances (Eq. (S10)) of linear chains (l.h.s. panels) and rings (r.h.s. panels)
normalized to corresponding monomer-monomer contour distances `. Color code is as in the rest of the paper and choice of
the symbols is as in Fig. S1. For linear chains, the values of the plateaus at large `, `K ≡ lim`→∞〈R2(`)〉/`, correspond to the

Kuhn lengths of the respective chains [1]: the horizontal lines show results based on the formula `K(〈Tch〉c,h) ≡ `K(∆t=0)

κB〈Tch〉c,h/ε
,

where `K(∆t = 0) comes from best fits of the passive-chain plateaus (on the interval `/σ > 100) and 〈Tch〉c,h are the measured
temperatures of cold/hot chains (see Table S2).
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FIG. S7. Spatial heterogeneity, ∆r2
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ment time T for lag-times τ/τMD = 6 · 10−1, 102, 103 and nanoprobe diameters d/σ = 2.5, 5.0, 7.5 (see legends). Each panel
here contains Nnp = 100 curves. Color code is as in the rest of the paper.
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FIG. S8. Probability distribution functions of one-dimensional nanoprobes displacements, P (τ ; ∆x) (Eq. (S15)), for the same
representative lag-times τ as in Fig. S6 and nanoprobe diameters d/σ = 2.5, 5.0, 7.5 (see legends). Color code is as in the rest of

the paper. Black solid lines correspond to the theoretical Gaussian distribution function, P (∆x) = 1√
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)
,

which is typical for ordinary diffusive processes.


