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1 NP–NP radial distribution function
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Figure S1: Data for N = 100. NP center–NP center radial
distribution functions g(r) at different NP volume fractions
φ mentioned in the legend.

2 Single chain structure factor
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Figure S2: Data for N = 200. Single-chain structure factor
in double-logarithmic representation. The dash-dotted line
shows the Debye function, the dashed line shows the power
law behavior (qRg)

−1/ν with ν = 0.50±0.01 obtained from
fitting for the 1 � qRg � Rg/b0 regime, and the dotted
vertical line marks the Rg/b0 ≈ 7.63 value with Rg = 7.4
and bond length b0 = 0.97.
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Figure S3: Data shown for N = 100. (a) Single chain static
structure factor measured at different NP volume fractions
for the systems containing chains of N = 100 beads each.
(b) Corresponding inverse form factor S−1

sc as a function of
q2 at small qRg � 1. From the initial slope the radius of
gyration is determined to be the same with the value ofRg =
5.2± 0.1 for all NP volume fractions.
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3 Gyration tensor analysis
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Figure S4: Gyration tensor analysis. (a) The ratios
〈λ1〉 / 〈λ3〉 and 〈λ2〉 / 〈λ3〉 for both N = 100, 200 chains
as a function of NP volume fraction where the three eigen-
values of gyration tensor λ1, λ2, and λ3 are sorted such that
λ1 ≥ λ2 ≥ λ3. The dashed lines indicate the correspond-
ing values of 〈λ1〉 / 〈λ3〉 ≈ 12.07 and 〈λ2〉 / 〈λ3〉 ≈ 2.72
for the Gaussian chains.1 (b) The relative shape anisotropy
is defined as2 κ2 = 1 − 3〈I2〉/〈I1〉2, where I1 and I2 are
the first and second tensor invariants of the gyration tensor,
I1 = λ1 +λ2 +λ3 and I2 = λ1λ2 +λ1λ3 +λ2λ3, which do
not depend on the ordering. The dashed line corresponds to
the value of κ2 ≈ 0.427 if the eigenvalues were statistically
independent, using the above ratios for Gaussian chains.

4 Pore size distribution

Here we provide full details about the simplest algorithm that
can be used to determine the pore radius distribution p(rp).
As mentioned in the caption of Fig. 5 at a given point in
space that can potentially be reached by polymers, the pore
radius rp is defined as the radius of the largest sphere (con-
taining that point), which can be placed into the system with-
out any overlap with the NPs. Points that can potentially be
reached by polymers are all those whose minimum distance
to any of the NPs is larger than the NP radius RNP. The

pore size histogram is sampled from the pore radii by visit-
ing all allowed points, i.e., all points outside the NP bodies,
with equal probability. To ensure equal probability, a point
p inside the simulation box is randomly created using three
equally distributed random numbers, and rejected if its min-
imum distance to a NP is below RNP, otherwise it is used. A
useful prerequisite to find the pore radius at an accepted point
in space is to once create an Euclidean distance map (EDM)
on a fine regular grid with a grid constant of δr = 0.05 (this
value determines the resolution of the pore radius distribu-
tion). At startup, all nodes of the EDM receive the value in-
finity. To construct the Euclidean distance map we loop over
all NPs. For each of the NPs, say NPi, whose center is resid-
ing at position Ri, we loop over all nodes r of the Euclidean
map and set EDM(r) = min[|Ri − r|,EDM(r)]. With the
EDM plus a random point p at hand, we know the EDM
value EDM(p). The radius of the largest sphere that can be
placed into the system without NP overlap and containing p
must be at least EDM(p), because EDM(p) is the radius of
the largest sphere that can be placed with its center located
at p. To find the pore radius at p we visit all those nodes r of
the EDM map that fulfill the condition |r − p| ≤ EDM(r).
The pore radius rp at point p is the largest of the EDM(r)
values fulfilling this condition. We repeat the procedure for
106 randomly chosen points p, giving rise to 106 pore radii
rp that enter the pore radius distribution.

What we described so far is a simple algorithm that can
be implemented directly. We actually used a more efficient
implementation, using neighbor lists, sort algorithms etc.
which produces exactly the same pore size distribution, but
is more difficult to be summarize in a single paragraph. As it
also only differs in the speed of execution, this detail should
be irrelevant for the understanding of the presented results.
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Figure S5: Data for N = 100. Pore size distribution p(rp)
at different NP volume fractions φ mentioned in the legend,
normalized such that

∫
p(rp)drp = 1.
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5 Entanglements
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Figure S6: The average entanglement number density in the
system, obtained from ρ̄e = (Z + ZNP)n/V (1 − φ) (a) in
the frozen- and ρ̄0e = Z0n/V (1 − φ) (b) in the phantom
limit as a function of NP volume fraction for both N = 100
and N = 200 chains.

6 Polymer and NP dynamics
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Figure S7: Data for N = 100. (a) MSD of NPs (solid lines)
and polymer COMs (dash-dotted lines) at different NP vol-
ume fractions.

7 Orientational relaxation
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Figure S8: Stretched exponent β obtained from fitting of the
KWW stretched exponential function to the Cee(t) simula-
tion data.
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8 Equilibration at large volume fractions
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Figure S9: Data for N = 200. Rg time series measured for
the system with a (large) NP volume fraction of φ = 49%,
starting from a phase separated configuration (NPs clustered)
at t = 0. Dashed horizontal line marks the average radius of
gyration.
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Figure S10: Data for N = 200. NP center–NP center radial
distribution functions g(r) at a NP volume fractions of φ =
49% measured over time, starting from a phase separated
configuration (NPs clustered) at t = 0.
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