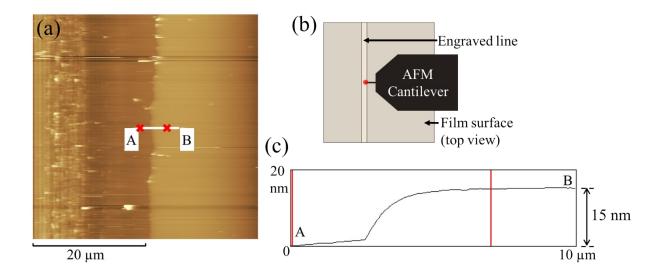
SUPPLEMENTARY INFORMATION

Regular Ordering of Spherical Microdomains in Dewetted Monolayer Islands
Induced by Thermal Annealing of Spin-Coated Ultrathin Films of a Triblock
Copolymer

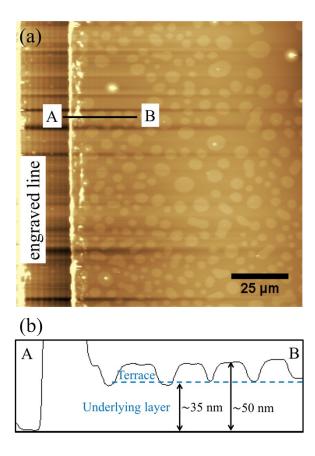
Rasha Ahmed Hanafy Bayomi^{1,2}, Takashi Aoki¹,

Sono Sasaki¹, and Shinichi Sakurai^{1,3,*}

¹ Department of Biobased Materials Science, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan


² Department of Apparel Design and Technology, Faculty of Applied Arts, Helwan University, Orman, Giza 12111, Egypt

³ Department of Chemical Engineering, Indian Institute of Technology Guwahati, Kamrup, Assam 781-039, India


* Corresponding author.

E-mail address: shin@kit.ac.jp (S. Sakurai).

Keywords: Block Copolymer; Spherical Microdomains; Dewetting; Ultrathin Film; Confinement; Monolayer, Regular Ordering; Atomic Force Microscopy.

Fig. S1 (a) AFM height image with an engraved line, used to evaluate the film thickness. (b) Schematic illustration showing a top-view of the applied method used to evaluate the film thickness. (c) Height profile of the film along the A-B line across the engraved line. As a result, the film thickness was evaluated from the height difference as 15 nm.

Fig. S2 (a) AFM height image with an engraved line, used to evaluate the film thickness. (b) Height profile of the film along the A-B line across the engraved line. As a result, the whole film thickness (including the terrace) was evaluated from the height difference as ~ 50 nm. the underlying layer was evaluated as ~ 35 nm. Subsequently, the terrace thickness was evaluated as ~ 15 nm.