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1. Vial inversion test of the designed peptides

SET1 i) FFP

vii) FPp

viii) ffP

SET 3
ix) FmocFFP  x) FmocFPF xi) FmocFPp xii) FmocFFp

Figure S1: vial inversion test confirming the hydrogel formation. A total of six peptides, FFP, PFF, ffp, pff, Fmoc-FFP, Fmoc-FFP

out of twelve designed and synthesized peptides, formed white, opaque, self-supporting hydrogels in DMSO : phosphate buffer

(1:10) following a temperature trigger.



2. Streoselectivity of the EF treated and untreated hydrogels
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Figure S2: Representative streoselectivity of the EF treated and untreated hydrogels obtained from chiral HPLC

chromatogram recorded at A=254nm. The error bars represent the standard deviation of three independent observations.



3. Characterization of gel forming peptides in presence and absence of electric field.
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Figure S3. Characterization of the hydrogels. (a) Vial inversion test of FFP hydrogel formed in the presence of 150 and
300Vem™ (b) CD spectra of FFP in 0 (red),150(blue) and 300Vem™ (green). (c) FTIR spectra of FFP peptide in O (red),150(blue)
and 300vem™ (green). (d) Vial inversion test of ffp hydrogel formed in the presence of 150 and 300Vem™ (e) CD spectra of the
ffp peptide in 0 (red),150(blue) and 300vem™ (green). (f) FTIR spectra of ffp peptide in O (red),150(blue) and 300Vem™
(green).(g) Vial inversion test of Fmoc-FFP hydrogel formed in the presence of 150 and 300Vem™ (h) CD spectra of Fmoc-FFP
peptide in O (red),150(blue) and 300vem™ (green). (i)FTIR spectra of Fmoc-FFP peptide in 0 (red),150(blue) and 300vem™®
(green). (j) Vial inversion test of Fmoc-FPF hydrogel formed in the presence of 150 and 300Vem™ (k) CD spectra of Fmoc-FPF
peptide in 0 (red),150(blue) and 300vem™ (green). (I) FTIR spectra of Fmoc-FPF peptide in O (red),150(blue) and 300vem™®
(green).



4. FESEM analysis of the hydrogel forming peptides at different electric field strengths.
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FigureS4. Morphological characterization of the gel forming peptide assemblies. FESEM images (a-c) of FFP hydrogel formed
in 0, 150 and 300 Vem™ . The ffp hydrogel formed in 0, 150 and 300 vem™ (d-f). Fmoc-FFP hydrogel formed in 0, 150 and 300
vem™ (g-i) and Fmoc-FPF hydrogel formed in 0, 150 and 300 Vem™ after 12h of incubation under ambient conditions.



5. Rheology of the peptide gels formed in presence and absence of EF.
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Figure S5. Amplitude sweep studies were carried out from 0.01 to 1000 % strain at a frequency of 10 rad s at 25 °C.
Storage G'(red) and loss G” (black) moduli of (a-c) FFP, (d-f) ffp (g-i)FmocFFP and (j-I) FmocFPF peptide hydrogels formed in the

absence (0 ch'l) and presence (150 and 300 ch'l) of the external electric field. The error bars represent the standard errors

of three independent observations.



6. Doxorubicin release assay
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Figure S6: Doxorubicin release assay: Doxorubicin release kinetics from EF treated and untreated gels a) PFF b) FFP c)
pff d) ffp e) FmocFFP and f) FmocFPF as determined by monitoring the absorbance at 490 nm. The error bars
represent the standard deviation of three independent observations.
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Figure S7. Chiral chromatogram for the aldol products catalyzed by FFP hydrogel formed in different EF strengths. Labeled
peaks correspond to syn aldol (+) and anti-aldol (-). Ratio of integrals between the minor and the major enantiomers was used
to determine the enantiomeric excess ee%.
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Figure S8. Chiral chromatogram for the aldol products catalyzed by PFF hydrogel formed in different EF strengths. Labeled
peaks correspond to syn aldol (+) and anti-aldol (-). Integral ratios between the minor and the major enantiomers were used to
determine the enantiomeric excess ee%.
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Figure S9. Chiral chromatogram for the aldol products catalyzed by ffp hydrogel formed in different EF strength. Labeled peaks
correspond to syn aldol (+) and anti-aldol (-). Integral ratios between the minor and the major enantiomers were used to
determine the enantiomeric excess ee%.
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Figure S10. Chiral chromatogram for the aldol products catalyzed by pff hydrogel formed in different EF strength. Labeled
peaks correspond to syn aldol (+) and anti-aldol (-). Integral ratios between the minor and the major enantiomers were used to
determine the enantiomeric excess ee%.
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Figure S11. Chiral chromatogram for the aldol products catalyzed by FmocFFP hydrogel formed in different EF strength.
Labeled peaks correspond to syn aldol (+) and anti-aldol (-). Integral ratios between the minor and the major enantiomers were

used to determine the enantiomeric excess ee%.
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Figure S12. Chiral chromatogram for the aldol products catalyzed by FmocFPF hydrogel formed in different EF strength.
Labeled peaks correspond to syn aldol (+) and anti-aldol (-). Integral ratios between the minor and the major enantiomers were
used to determine the enantiomeric excess ee%.
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7. Dipole moment of the peptides in water.

Figure S13: Dipole moment of the designed peptides in water. To study the dipole moment of the peptides in water,
Molecular Dynamics (MD) simulations were performed with a GROMOS96 force field (54a7 parameter set) using GROMACS
5.0.4 package. Changes were made in the residue topology of the simulation tool, to incorporate the structural parameters of
the D-amino acids. Each peptide was placed in a dodecahedron box with a spacing of 1.0 A from the box edge. The system was
solvated using the flexible SPC/E water model. The solvated system was neutralised to zero. Energy minimisation was carried
out using the steepest descent until a tolerance of 1000 KJ mol-1 nm-1 was reached. Periodic boundary conditions were
deployed in all the systems. The dipole moment of the peptides was calculated using gmx dipole for the energy minimised
frame. < M_i >, i for X, Y and Z axis, is the net vector in each frame. Dipole moments were calculated as the square root of the
sum of the squares of <M_i>.
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