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Derivation of bending elasticity constants for self-assembled monolayers formed by

surfactants with rigid and flexible tail

We may write the free energy per unit area as a function of the mean and Gaussian curvatures, H

and K, respectively, in accordance with the Helfrich expression !

Y(HK) =yo + 2k (H - Ho)® + kK =y, - 4k HoH + 2k H* + & K (s1)

Eq (S1) introduces three bending elasticity constants, i.e. spontaneous curvature (k.H,), bending
rigidity (k.) and saddle-splay constant (7‘%), 7 = /(H = K= 0) is the free energy per unit area of a

_ 2
planar monolayer whereas Y0 = ¥p ~ 2kcHy denotes the corresponding quantity at H = Hyand K= 0.

Hence, the three bending elasticity constants may formally be defined as
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where y= g/la and ¢is the free energy and a the area per aggregated surfactant.

Surfactants with rigid tails
We may write the three bending elasticity constants as sums of the three contributions

hydrophobic effect (hb), electrostatic free energy (el) and residual head group free energy (hg) %3,

Le.
kcHO = (kcHO)hb + (kcHO)hg + (kcHO)el (SS)
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We may also write the area per aggregated surfactant, a, as an expansion in H and K,

11 e
—=—(1+kH + k,H* + k K)

a 4 (S8)

where lower case p denotes planar geometry and ko kakaare three constants with respect to
curvature.

The hydrophobic effect

The hydrophobic free energy per aggregated surfactant
Enb = Enp T AW py (S9)

where 5, is the hydrocarbon/water interfacial tension. Combining Eqs (S8) and (S9), and

identifying y = &/a with the Helfrich expression in Eq (S1), gives 2
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Electrostatics

The curvature dependence on the electrostatic free energy as calculated from the Gouy-Chapman
solution to the Poisson-Boltzmann-equation has previously been derived by Mitchel and Ninham *#,

ie.

gel
= hy+ hyH, + hHE + hiK 513)



where H, and K, are defined at the surface of charge, k is Boltzmann’s constant and T is the

absolute temperature. The four parameters

ho = 2[In (s+m)]_—vszzl'l
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h3 =— TDl
K°S (S17)
are functions of the reduced charge density S and the Debye screening length x~!. D; denotes the

Debye function, defined as

X

t
Dl(x)zf - dt
e -1

0

(S18)

Assuming the surface of charge to be located a distance d/2 outside the hydrocarbon/water
interface (corresponding to the center of a spherical head group with diameter d), the following

expressions may be derived from Eqs (52-4), (S8) and (S13)
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We have introduced the dimensionless parameters
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p:

which both assume values between zero and unity and where the reduced surface charge density is

defined as
2mly
S,=—
kay (S24)

where I = 7.15 A is the Bjerrum length and a, is the area per molecule in a planar surfactant layer.

Head group repulsion
The free energy of mixing head groups with aqueous solvent in an outer hydrophilic shell of the

surfactant layer may be written as follows 3

€hg  Ehg vhgl - ¢hg
—=—+4+——1n

KT kT v, oy (1=01g) +In (S25)

where ¢, is the volume fraction of the head groups in the shell, v;, and v, is the volumes of head

group and water molecule respectively. The parameter kg comprises curvature independent
residual contributions to the head group free energy. Because of geometrical reasons ¢, depends
on the curvature of the surfactant layer and, as a result, we have been able to derive the following

expressions for the three bending elasticity constants 3

k H ,
( C O)hg — i(d _ ka)



kT 4a, , (S27)
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In the derivation, we have considered the head group to be a sphere with diameter d. ¢ and w are

two dimensionless parameters defined as

(p—1+vhg (qu
vwl_(ph?g (829)
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where superscript p denotes planar geometry.

Spontaneous curvature
Summing the three contributions in Egs (S10), (S19) and (S26) gives the following expression for

the spontaneous curvature for a surfactant with a rigid tail

(kcHO) 1, (Sp)+ d( +20)
S lrigid = —In|— —( W q
kT Tigl 27TlB Zq 4-ap (831)

In the derivation of (S31), we have been able to eliminate all parameters depending on kq through

the equilibrium condition for planar geometry, i.e.

de, kT
— =y, ——(w+2q)=0

da, ap (S32)
where & = &b+ €01 €5 and

ey = eny + @Y hp (S33)
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Subscript/superscript p denoted planar geometry, i.e. H= K = 0, and superscript ° denotes

curvature independent contribution.

We may rewrite Eq (S31) by solving a, from Eq (S32)

kT
a,=—(w+2q)
Yib (S36)

Inserting Eqs (S36) in Eq (S31) gives

k.H, 1 Sp\ Ymd
kT Jrioid = 2 20 ) T 2kT
B \~4 (S37)

We note that the first term in Eq (S37) is identical to the electrostatic contribution for an infinitely
thin charged layer as derived by Mitchell and Ninham. The second term in Eq (S37) only appears as
a result of the outer hydrophilic layer having a finite thickness, ie. it consists of spherical head
groups with a diameter d and a surface of charge located at a distance d/2 outside the hydrophobic-
hydrophilic interface (in the central plane of the spherical head groups). We may also note that the
spontaneous curvature for a surfactant with a rigid tail does not explicitly depend on the thickness

¢ of the hydrophobic part of the surfactant monolayer.

Bending rigidity

Summing Eqs (S11), (S20) and (S27), as well as eliminating terms including kq by means of

employing the equilibrium condition in Eq (S32), gives

kT
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This expression may be further simplified by minimizing with respect to (d - ka) which gives

2a,pq

d-k)=——"
(4-k) nlg(p + 2p) (S39)

Inserting Eq (S39) in (S38) gives
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Eliminating a, by inserting Eq (S36) in (S40) finally gives

(kc) x'lfl_Z(p—q)z)_(pq)sz(w+2q)
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Similar to the expression for the spontaneous curvature in Eq (S37), the bending rigidity for a
surfactant with rigid tail does not depend on the thickness of the hydrophobic part of the

monolayer.
Saddle-play constant

Similarly to spontaneous curvature and bending rigidity we may arrive at an expression for the

saddle-splay constant by summing Eqs (512), (S21) and (S28) as well as eliminating terms

including ke by by employing the equilibrium expression in Eq (532)

k 1 S S
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Eq (S42) may be rewritten by using Eq (S32)

7cc _ 1{ 4 1 Sp dl Sp yhbd2 2w+ 3q
werjrioe = g Pl g )| * M ag)| ek (v 2.
B q q q (S43)

d? ( N Zw)
—_—— | q —
2ap 3

(S42)



As for the spontaneous curvature, the expression for the saddle-splay constant in Eq (S43) may be

divided into an infinitely thin monolayer contribution due to electrostatics and one finite size

contribution depending on the thickness d of the hydrophilic part of the monolayer. (kc/kT)rigid does

not depend on the thickness £ of the hydrophobic part of the monolayer.

Surfactants with flexible tails

Surfactants or phospholipids with one nor two flexible aliphatic chains as tail group mainly differ
from surfactants with rigid tails so far as an additional free energy contribution (&44;) taking into
account that chain conformational entropy must be added. % ¢ &, differs from the other
contributions in the sense that is presupposes a finite thickness & of the hydrophobic part of the

monolayer and the corresponding contribution to the spontaneous curvature can be written as 2

fp dgchzin '
(kcHO)chain == W( P + ka)
p “op (S44)
From the geometrical relation Vtail = Sp%, it follows that
dgchZin _ fpd‘c"chlz;in
da, @, di, (545)

which gives the equilibrium condition

dsp_ wkT quT Epdgchzin_
P % @ a, df, (S46)

Combining Eq (S44) and (S46) gives the following relation for chain conformational entropy

contribution to the spontaneous curvature

1

(w + 2q)kT
(kcHO)chain == Z[yhb -
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P (S47)



Summing all contributions in Egs (S10), (S19), (S26) and (S44), and eliminating terms including kq

by means of employing the equilibrium condition in Eq (S46) gives

kcH 0 1 Sp (fp + d) Epyhb
T Iftex =ﬁln 20l T g @t 2o - kT
Tp \24 A (548)

We not that, in contrast to the case of surfactants with rigid tail, the spontaneous curvature of
surfactants with flexible tail depends strongly on the thickness &, of the hydrophobic part of the

monolayer. We may combine Eqgs (S31) and (S48) to arrive at

3
kcHO _ kcHO _ Ep Vhb _ w+ 2q _ kcHO _ Ep dechz;in
kT )kt [0 4\kT a, |\ kT )9 4vkT dg, (S49)

p
Since the derivative %€chain/@p js expected to be positive for monolayers with &, larger than half the
length of a fully stretched chain, we may conclude that surfactants with flexible tail are, in general,

expected to have lower spontaneous curvature than surfactants with rigid tail.

Bending rigidity

The chain conformational entropy contribution to the bending rigidity is given by
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Summing over the different contributions in Eqs (S11), (S20), (S27) and (S50) gives
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kq by means of employing the

Again, we have been able to eliminate terms with the parameter
equilibrium condition in Eq (S46). Analogous to the case with rigid surfactants, Eq (S51) may be
further simplified by minimizing with respect to ke, However, it turns out that the chain
conformational entropy contribution tends to make the thickness & of the surfactant monolayer
rather insensitive towards changes in curvature. As a result, Eq (S51) may be approximated with

the expression valid for the special case of a monolayer that is bent at constant ¢ =%, For the latter

case Xa =" $p holds exactly true ? and we may simplify Eq (S51) so as to give

key k7l 20-9%) | pq (¢ +2p) 2
(k_T)f TP )+ﬂ_ls(€” R (552)

Combining Eqs (S41) and (S52) gives
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Analogous to the spontaneous curvature in Eq (S48), and in contrast to the case of surfactants with

rigid tail, (kSKT) frex depends strongly on &,. Since all parameters in the second and third terms on

the right hand side of Eq (S53) are positive quantities, we may conclude that

kC kC
(ﬁ)ﬂex > (ﬁ)rigid (554)
is always true.
Saddle Splay-constant
The chain conformational entropy contributions to the saddle-splay constant equals

14 2
kchain — M(km %)
@ 3

© g, dg, i (S55)

Summing Eqs (S12), (S21), (S28) and (S55) gives
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where all terms including ka have been eliminated with the equilibrium condition in Eq (S46).

Combining Eqs (S43) and (S56) gives the following relation

- 5 2 5 4
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between the saddle-splay constant for surfactants with rigid and flexible tail, respectively.



Model employed in the least squares fitting data analysis

The differential scattering cross section as a function of scattering vector q for a sample of weakly
interacting monodisperse micelles with concentration n (number of micelles per unit volume) can

be written as follows 7

da(q) 2
= (P coreV core) P(DI[1 S(g) -1
10 = MBPcoreV core) P(OIL +B(@D(S(@) - D] (558)

The micelles were best fitted using a form factor P(q) for core-and-shell triaxial core-shell ellipsoids
with half axes a, b and c of the core and a thickness d of the outer shell. In accordance, we may write

the orientationally averaged form factor for a non-spherical micelle as

211:/ /.
P(q) = (F*()) = - f fF(q,qb,H)zsin ddpdo
0 0

(S59)
where F is the amplitude of the form factor and
F 2
s = £
P (560)
where
271/ /.
(F()) = - f f F(q,¢,0)sin pdpdo
00 (S61)

For a core-and-shell micelle we may write the amplitude as a sum of contributions from the core

and the shell, respectively,

Vsh u

F(0.06) = Foor(@$8) + 0 ZF on(0.$.0)
core (562)

where
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and Ap..e and Apgpey are the differences in scattering length densities between core and shell,
respectively, and solvent. V.. = V(a, b, c) is the volume of the core and Vy,oy=V(a+d,b+d,c+d) —

V(a, b, c) is the volume the outer shell.

The amplitude as a function of the radial distance r for a general ellipsoid with half axes g, b and ¢

equals 8
ere(q,r(a,b,c,q'),@)) = Fsph (864)
where
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with
r(a,b,c,,0) = \/(azsinz 0 + b*cos? 9)5in2 ¢ + c2cos? ¢ (S66)

The corresponding quantity for the shell may be written as

ViotFspp(@r(a+db +dc+dg,0)) -V .. Fou(ar(ab.cdd))

Fopen= v
shell (S67)

where Vo, =V(a+d,b+d,c+d)= Ve + Vgep and

r(a+db+dc+dep0)= \/((a + d)?sin? 0 + (b + d)?cos? 9)sin2 ¢+ (c+ d)?cos’ ¢
(S68)



The parameters in the model were optimized by means of conventional least squares analysis, with

_ 2
e rerormula ion at, - core” core/ , wWasS use as one common Sscale arameter. e
the reformulation that, ® = ™4 coreV core) d 1 ter. 7 ° Th

quality of the fits were measured in terms of the reduced chi-squared parameter defined as

i ( Lxp(a:) = Imod(ql))

(S69)

where I.,,(q;) and I,,4(q;) are the experimental and model intensities, respectively, at a scattering
vector modulus g,, o; is the statistical uncertainties on the data points, N is the total number of data
points and M is the number of parameters optimized in the model fit. In the fitting analysis of rather

small micelles formed at x = 0.25 and 0.50, we have used six fitting parameters (q, b, ¢, ¢, ¢, and

Ze), in addition to the scaling parameter %1~ n(Apcorchore)z and residual background scattering,
where @, is the volume fraction of micelles and z,s denotes the effective overall charge of the
micelles. The latter two parameters were, however, seen to have little influence on the scattering
behavior and could not be accurately determined from the model fitting analysis due to the high
ionic strengths in the solutions (fixed to [NaCl] = 154 mM). The micelles formed at x = 0.75 were too
large to determine their size from the SAXS data which were fitted using three parameters (a, b, and

0). The shell thickness d was fixed to 10 A for all samples.

Contrast profile of three described in Table.1
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Figure S1: X-ray contrast profile between the core and shell of mixed NaDC-DMPC micelles at different compositions XPL and
fixed total concentration [NaDC] + [DMPC] = 80 mM. The fitted SAXS curve has been shown in the article Fig.4.

The excess scattering length density of the core-and-shell has been normalized by the scattering
length density of water. The radius that has been shown in the Fig.S1 is the minor axis of ellipsoidal
micelles.
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