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Derivation of bending elasticity constants for self-assembled monolayers formed by 

surfactants with rigid and flexible tail

We may write the free energy per unit area as a function of the mean and Gaussian curvatures, H 

and K, respectively, in accordance with the Helfrich expression 1

(S1)𝛾(𝐻,𝐾) = 𝛾0 + 2𝑘𝑐(𝐻 ‒ 𝐻0)2 + 𝑘̅𝑐𝐾 = 𝛾𝑝 ‒ 4𝑘𝑐𝐻0𝐻 + 2𝑘𝑐𝐻2 + 𝑘̅𝑐𝐾 

Eq (S1) introduces three bending elasticity constants, i.e. spontaneous curvature (kcH0), bending 

rigidity (kc) and saddle-splay constant ( ). p = (H = K = 0) is the free energy per unit area of a 𝑘̅𝑐

planar monolayer whereas  denotes the corresponding quantity at H = H0 and K = 0. 𝛾0 = 𝛾𝑝 ‒ 2𝑘𝑐𝐻2
0

Hence, the three bending elasticity constants may formally be defined as

(S2)
𝑘𝑐𝐻0 =‒

1
4(∂𝛾

∂𝐻)𝐾[𝐻 = 0]

(S3)
𝑘𝑐 =

1
4(∂2𝛾

∂𝐻2)𝐾[𝐻 = 0]

(S4)
𝑘̅𝑐 = (∂𝛾

∂𝐾)𝐻[𝐾 = 0]

where  = a and is the free energy and a the area per aggregated surfactant.

Surfactants with rigid tails

We may write the three bending elasticity constants as sums of the three contributions 

hydrophobic effect (hb), electrostatic free energy (el) and residual head group free energy (hg) 2, 3, 

i.e.

(S5)𝑘𝑐𝐻0 = (𝑘𝑐𝐻0)ℎ𝑏 + (𝑘𝑐𝐻0)ℎ𝑔 + (𝑘𝑐𝐻0)𝑒𝑙

(S6)𝑘𝑐 = 𝑘ℎ𝑏
𝑐 + 𝑘ℎ𝑔

𝑐 + 𝑘𝑒𝑙
𝑐

(S7)𝑘̅𝑐 = 𝑘̅ℎ𝑏
𝑐 + 𝑘̅ℎ𝑔

𝑐 + 𝑘̅𝑒𝑙
𝑐



We may also write the area per aggregated surfactant, a, as an expansion in H and K,

(S8)

1
𝑎

=
1
𝑎𝑝

(1 + 𝑘 '
𝑎𝐻 + 𝑘''

𝑎𝐻2 + 𝑘'''
𝑎𝐾)

where lower case p denotes planar geometry and are three constants with respect to 𝑘 '
𝑎, 𝑘''

𝑎,𝑘'''
𝑎

curvature.

The hydrophobic effect

The hydrophobic free energy per aggregated surfactant

(S9)𝜀ℎ𝑏 = 𝜀 °
ℎ𝑏 + 𝑎𝛾ℎ𝑏

where hb is the hydrocarbon/water interfacial tension. Combining Eqs (S8) and (S9), and 

identifying  = /a with the Helfrich expression in Eq (S1), gives 2

(S10)
(𝑘𝑐𝐻0)ℎ𝑏 =

𝛾ℎ𝑏𝑘 '
𝑎

4

(S11)
𝑘ℎ𝑏

𝑐 =‒
𝛾ℎ𝑏𝑘''

𝑎

2

(S12)𝑘̅ℎ𝑏
𝑐 =‒ 𝛾ℎ𝑏𝑘'''

𝑎

Electrostatics

The curvature dependence on the electrostatic free energy as calculated from the Gouy-Chapman 

solution to the Poisson-Boltzmann-equation has previously been derived by Mitchel and Ninham 4, 

i.e. 

(S13)

𝜀𝑒𝑙

𝑘𝑇
= ℎ0 + ℎ1𝐻𝑒𝑙 + ℎ2𝐻 2

𝑒𝑙 + ℎ3𝐾𝑒𝑙



where Hel and Kel are defined at the surface of charge, k is Boltzmann’s constant and T is the 

absolute temperature. The four parameters

(S14)
ℎ0 = 2[ln (𝑆 + 𝑆2 + 1)] ‒

𝑆2 + 1 ‒ 1

𝑆

(S15)
ℎ1 =‒

4
𝜅𝑆

ln (1 + 𝑆2 + 1
2 )

(S16)
ℎ2 =

2

𝜅2𝑆(1 ‒
2

𝑆2
+

2

𝑆2 𝑆2 + 1)

(S17)
ℎ3 =‒

2

𝜅2𝑆
𝐷1(ln (1 + 𝑆2 + 1

2 ))
are functions of the reduced charge density S and the Debye screening length . D1 denotes the 

Debye function, defined as

(S18)
𝐷1(𝑥) =

𝑥

∫
0

𝑡

𝑒𝑡 ‒ 1
𝑑𝑡

Assuming the surface of charge to be located a distance d/2 outside the hydrocarbon/water 

interface (corresponding to the center of a spherical head group with diameter d), the following 

expressions may be derived from Eqs (S2-4), (S8) and (S13)

(S19)

(𝑘𝑐𝐻0)𝑒𝑙

𝑘𝑇
=

1
2𝜋𝑙𝐵

ln (𝑆𝑝

2𝑞) +
𝑞

2𝑎𝑝
(𝑑 ‒ 𝑘 '

𝑎)

(S20)

𝑘𝑒𝑙
𝑐

𝑘𝑇
=

𝜅 ‒ 1

2𝜋𝑙𝐵
(1 ‒

2(𝑝 ‒ 𝑞)2

𝑝𝑞 ) +
𝑝𝑞
𝜋𝑙𝐵

(𝑑 ‒ 𝑘 '
𝑎) +

𝑝
2𝑎𝑝

(𝑑 ‒ 𝑘 '
𝑎)2 +

𝑞
𝑎𝑝

𝑘''
𝑎

(S21)

𝑘̅𝑒𝑙
𝑐

𝑘𝑇
=‒

𝜅 ‒ 1

𝜋𝑙𝐵
𝐷1(ln (𝑆𝑝

2𝑞)) ‒
𝑑

𝜋𝑙𝐵
ln (𝑆𝑝

2𝑞) ‒
2𝑞
𝑎𝑝

(𝑑2

4
‒ 𝑘'''

𝑎)



We have introduced the dimensionless parameters

(S22)
𝑝 =

𝑆𝑝

𝑆2
𝑝 + 1

(S23)
𝑞 =

𝑆𝑝

𝑆2
𝑝 + 1 + 1

=
𝑆2

𝑝 + 1 ‒ 1

𝑆𝑝

which both assume values between zero and unity and where the reduced surface charge density is 

defined as

(S24)
𝑆𝑝 =

2𝜋𝑙𝐵

𝜅𝑎𝑝

where lB = 7.15 Å is the Bjerrum length and ap is the area per molecule in a planar surfactant layer.

Head group repulsion

The free energy of mixing head groups with aqueous solvent in an outer hydrophilic shell of the 

surfactant layer may be written as follows 3

(S25)

𝜀ℎ𝑔

𝑘𝑇
=

𝜀 °
ℎ𝑔

𝑘𝑇
+

𝑣ℎ𝑔

𝑣𝑤

1 ‒ 𝜙ℎ𝑔

𝜙ℎ𝑔
ln (1 ‒ 𝜙ℎ𝑔) + ln 𝜙ℎ𝑔

wherehg is the volume fraction of the head groups in the shell, vhg and vw is the volumes of head 

group and water molecule respectively. The parameter  comprises curvature independent 𝜀 °
ℎ𝑔

residual contributions to the head group free energy. Because of geometrical reasons hg depends 

on the curvature of the surfactant layer and, as a result, we have been able to derive the following 

expressions for the three bending elasticity constants 3

(S26)

(𝑘𝑐𝐻0)ℎ𝑔

𝑘𝑇
=

𝜔
4𝑎𝑝

(𝑑 ‒ 𝑘 '
𝑎)



(S27)

𝑘ℎ𝑔
𝑐

𝑘𝑇
=

𝜑
4𝑎𝑝

(𝑑 ‒ 𝑘 '
𝑎)2 +

𝜔
2𝑎𝑝

𝑘''
𝑎

(S28)

𝑘̅ℎ𝑔
𝑐

𝑘𝑇
=‒

𝜔
𝑎𝑝

(𝑑2

3
‒ 𝑘'''

𝑎)

In the derivation, we have considered the head group to be a sphere with diameter d.  and  are 

two dimensionless parameters defined as

(S29)
𝜑 = 1 +

𝑣ℎ𝑔

𝑣𝑤

𝜙 𝑝
ℎ𝑔

1 ‒ 𝜙 𝑝
ℎ𝑔

(S30)
𝜔 = 1 ‒

𝑣ℎ𝑔

𝑣𝑤 (1 +
ln (1 ‒ 𝜙 𝑝

ℎ𝑔)
𝜙 𝑝

ℎ𝑔
) = 1 +

𝑣ℎ𝑔

𝑣𝑤
𝜙 𝑝

ℎ𝑔(1
2

+
𝜙 𝑝

ℎ𝑔

3
+

𝜙 𝑝
ℎ𝑔

2

4
+ ⋯)

where superscript p denotes planar geometry.

Spontaneous curvature

Summing the three contributions in Eqs (S10), (S19) and (S26) gives the following expression for 

the spontaneous curvature for a surfactant with a rigid tail

(S31)
(𝑘𝑐𝐻0

𝑘𝑇 )𝑟𝑖𝑔𝑖𝑑 =
1

2𝜋𝑙𝐵
ln (𝑆𝑝

2𝑞) +
𝑑

4𝑎𝑝
(𝜔 + 2𝑞)

In the derivation of (S31), we have been able to eliminate all parameters depending on  through 𝑘 '
𝑎

the equilibrium condition for planar geometry, i.e.

(S32)

𝑑𝜀𝑝

𝑑𝑎𝑝
= 𝛾ℎ𝑏 ‒

𝑘𝑇
𝑎𝑝

(𝜔 + 2𝑞) = 0

where  and𝜀𝑝 = 𝜀 𝑝
ℎ𝑏 + 𝜀𝑝

𝑒𝑙 + 𝜀 𝑝
ℎ𝑔

(S33)𝜀 𝑝
ℎ𝑏 = 𝜀 °

ℎ𝑏 + 𝑎𝑝𝛾ℎ𝑏



(S34)

𝜀 𝑝
ℎ𝑔

𝑘𝑇
=

𝜀 °
ℎ𝑔

𝑘𝑇
+

𝑣ℎ𝑔

𝑣𝑤

1 ‒ 𝜙 𝑝
ℎ𝑔

𝜙 𝑝
ℎ𝑔

ln (1 ‒ 𝜙 𝑝
ℎ𝑔) + ln 𝜙 𝑝

ℎ𝑔

(S35)

𝜀𝑝
𝑒𝑙

𝑘𝑇
= 2ln (𝑆𝑝 + 𝑆2

𝑝 + 1) ‒ 𝑞

Subscript/superscript p denoted planar geometry, i.e. H = K = 0, and superscript  denotes 

curvature independent contribution.

We may rewrite Eq (S31) by solving ap from Eq (S32)

(S36)
𝑎𝑝 =

𝑘𝑇
𝛾ℎ𝑏

(𝜔 + 2𝑞)

Inserting Eqs (S36) in Eq (S31) gives

(S37)
(𝑘𝑐𝐻0

𝑘𝑇 )𝑟𝑖𝑔𝑖𝑑 =
1

2𝜋𝑙𝐵
ln (𝑆𝑝

2𝑞) +
𝛾ℎ𝑏𝑑

4𝑘𝑇

We note that the first term in Eq (S37) is identical to the electrostatic contribution for an infinitely 

thin charged layer as derived by Mitchell and Ninham. The second term in Eq (S37) only appears as 

a result of the outer hydrophilic layer having a finite thickness, i.e. it consists of spherical head 

groups with a diameter d and a surface of charge located at a distance d/2 outside the hydrophobic-

hydrophilic interface (in the central plane of the spherical head groups). We may also note that the 

spontaneous curvature for a surfactant with a rigid tail does not explicitly depend on the thickness 

 of the hydrophobic part of the surfactant monolayer.

Bending rigidity

Summing Eqs (S11), (S20) and (S27), as well as eliminating terms including  by means of 𝑘''
𝑎

employing the equilibrium condition in Eq (S32), gives

(S38)
( 𝑘𝑐

𝑘𝑇)𝑟𝑖𝑔𝑖𝑑 =
𝜅 ‒ 1

2𝜋𝑙𝐵
(1 ‒

2(𝑝 ‒ 𝑞)2

𝑝𝑞 ) +
𝑝𝑞
𝜋𝑙𝐵

(𝑑 ‒ 𝑘 '
𝑎) +

𝑝
2𝑎𝑝

(𝑑 ‒ 𝑘 '
𝑎)2 +

𝜑
4𝑎𝑝

(𝑑 ‒ 𝑘 '
𝑎)2



This expression may be further simplified by minimizing with respect to  which gives(𝑑 ‒ 𝑘 '
𝑎)

(S39)
(𝑑 ‒ 𝑘 '

𝑎) =‒
2𝑎𝑝𝑝𝑞

𝜋𝑙𝐵(𝜑 + 2𝑝)

Inserting Eq (S39) in (S38) gives

(S40)
( 𝑘𝑐

𝑘𝑇)𝑟𝑖𝑔𝑖𝑑 =
𝜅 ‒ 1

2𝜋𝑙𝐵
(1 ‒

2(𝑝 ‒ 𝑞)2

𝑝𝑞 ) ‒
𝑎𝑝(𝑝𝑞)2

(𝜋𝑙𝐵)2(𝜑 + 2𝑝)

Eliminating ap by inserting Eq (S36) in (S40) finally gives

(S41)
( 𝑘𝑐

𝑘𝑇)𝑟𝑖𝑔𝑖𝑑 =
𝜅 ‒ 1

2𝜋𝑙𝐵
(1 ‒

2(𝑝 ‒ 𝑞)2

𝑝𝑞 ) ‒ ( 𝑝𝑞
𝜋𝑙𝐵

)2 𝑘𝑇
𝛾ℎ𝑏

(𝜔 + 2𝑞)
(𝜑 + 2𝑝)

Similar to the expression for the spontaneous curvature in Eq (S37), the bending rigidity for a 

surfactant with rigid tail does not depend on the thickness of the hydrophobic part of the 

monolayer.

Saddle-play constant

Similarly to spontaneous curvature and bending rigidity we may arrive at an expression for the 

saddle-splay constant by summing Eqs (S12), (S21) and (S28) as well as eliminating terms 

including  by by employing the equilibrium expression in Eq (S32)𝑘'''
𝑎

(S42)( 𝑘̅𝑐

𝑘𝑇)𝑟𝑖𝑔𝑖𝑑 =‒
1

𝜋𝑙𝐵
[𝜅 ‒ 1𝐷1(ln (𝑆𝑝

2𝑞)) + 𝑑ln (𝑆𝑝

2𝑞)] ‒
𝑑2

2𝑎𝑝
(𝑞 +

2𝜔
3 )

Eq (S42) may be rewritten by using Eq (S32)

(S43)( 𝑘̅𝑐

𝑘𝑇)𝑟𝑖𝑔𝑖𝑑 =‒
1

𝜋𝑙𝐵
[𝜅 ‒ 1𝐷1(ln (𝑆𝑝

2𝑞)) + 𝑑ln (𝑆𝑝

2𝑞)] ‒
𝛾ℎ𝑏𝑑2

6𝑘𝑇 (2𝜔 + 3𝑞
𝜔 + 2𝑞 )



As for the spontaneous curvature, the expression for the saddle-splay constant in Eq (S43) may be 

divided into an infinitely thin monolayer contribution due to electrostatics and one finite size 

contribution depending on the thickness d of the hydrophilic part of the monolayer.  does (𝑘̅𝑐 𝑘𝑇)𝑟𝑖𝑔𝑖𝑑

not depend on the thickness  of the hydrophobic part of the monolayer.

Surfactants with flexible tails

Surfactants or phospholipids with one nor two flexible aliphatic chains as tail group mainly differ 

from surfactants with rigid tails so far as an additional free energy contribution (chain) taking into 

account that chain conformational entropy must be added. 5, 6 chain differs from the other 

contributions in the sense that is presupposes a finite thickness  of the hydrophobic part of the 

monolayer and the corresponding contribution to the spontaneous curvature can be written as 2

(S44)
(𝑘𝑐𝐻0)𝑐ℎ𝑎𝑖𝑛 =‒

𝜉𝑝

4𝑎𝑝

𝑑𝜀 𝑝
𝑐ℎ𝑎𝑖𝑛

𝑑𝜉𝑝
(𝜉𝑝 + 𝑘 '

𝑎)

From the geometrical relation , it follows that𝑣𝑡𝑎𝑖𝑙 = 𝜉𝑝𝑎𝑝

(S45)

𝑑𝜀 𝑝
𝑐ℎ𝑎𝑖𝑛

𝑑𝑎𝑝
=‒

𝜉𝑝

𝑎𝑝

𝑑𝜀 𝑝
𝑐ℎ𝑎𝑖𝑛

𝑑𝜉𝑝

which gives the equilibrium condition 

(S46)

𝑑𝜀𝑝

𝑑𝑎𝑝
= 𝛾ℎ𝑏 ‒

𝜔𝑘𝑇
𝑎𝑝

‒
2𝑞𝑘𝑇

𝑎𝑝
‒

𝜉𝑝

𝑎𝑝

𝑑𝜀 𝑝
𝑐ℎ𝑎𝑖𝑛

𝑑𝜉𝑝
= 0

Combining Eq (S44) and (S46) gives the following relation for chain conformational entropy 

contribution to the spontaneous curvature

(S47)
(𝑘𝑐𝐻0)𝑐ℎ𝑎𝑖𝑛 =‒

1
4[𝛾ℎ𝑏 ‒

(𝜔 + 2𝑞)𝑘𝑇
𝑎𝑝

](𝜉𝑝 + 𝑘 '
𝑎)



Summing all contributions in Eqs (S10), (S19), (S26) and (S44), and eliminating terms including  𝑘 '
𝑎

by means of employing the equilibrium condition in Eq (S46) gives

(S48)
 (𝑘𝑐𝐻0

𝑘𝑇 )𝑓𝑙𝑒𝑥 =
1

2𝜋𝑙𝐵
ln (𝑆𝑝

2𝑞) +
(𝜉𝑝 + 𝑑)

4𝑎𝑝
(𝜔 + 2𝑞) ‒

𝜉𝑝𝛾ℎ𝑏

4𝑘𝑇

We not that, in contrast to the case of surfactants with rigid tail, the spontaneous curvature of 

surfactants with flexible tail depends strongly on the thickness p of the hydrophobic part of the 

monolayer. We may combine Eqs (S31) and (S48) to arrive at

(S49)
(𝑘𝑐𝐻0

𝑘𝑇 )𝑓𝑙𝑒𝑥 = (𝑘𝑐𝐻0

𝑘𝑇 )𝑟𝑖𝑔𝑖𝑑 ‒
𝜉𝑝

4 (𝛾ℎ𝑏

𝑘𝑇
‒

𝜔 + 2𝑞
𝑎𝑝

) = (𝑘𝑐𝐻0

𝑘𝑇 )𝑟𝑖𝑔𝑖𝑑 ‒
𝜉3

𝑝

4𝑣𝑘𝑇

𝑑𝜀 𝑝
𝑐ℎ𝑎𝑖𝑛

𝑑𝜉𝑝

Since the derivative  is expected to be positive for monolayers with p larger than half the 𝑑𝜀 𝑝
𝑐ℎ𝑎𝑖𝑛 𝑑𝜉𝑝

length of a fully stretched chain, we may conclude that surfactants with flexible tail are, in general, 

expected to have lower spontaneous curvature than surfactants with rigid tail.

Bending rigidity

The chain conformational entropy contribution to the bending rigidity is given by

𝑘𝑐ℎ𝑎𝑖𝑛
𝑐 =

𝜉2
𝑝

4𝑎𝑝

𝑑2𝜀 𝑝
𝑐ℎ𝑎𝑖𝑛

𝑑𝜉𝑝
2 (𝜉𝑝 + 𝑘 '

𝑎)2 +
𝜉𝑝

4𝑎𝑝

𝑑𝜀 𝑝
𝑐ℎ𝑎𝑖𝑛

𝑑𝜉𝑝
(𝑘''

𝑎 + 2𝜉𝑝𝑘 '
𝑎 + 2𝜉2

𝑝) +
𝜉𝑝

2𝑎𝑝

𝑑𝜀 𝑝
𝑐ℎ𝑎𝑖𝑛

𝑑𝜉𝑝
𝑘 '

𝑎(𝜉𝑝 + 𝑘 '
𝑎)

(S50)

Summing over the different contributions in Eqs (S11), (S20), (S27) and (S50) gives

( 𝑘𝑐

𝑘𝑇)𝑓𝑙𝑒𝑥

=
𝜅 ‒ 1

2𝜋𝑙𝐵
(1 ‒

2(𝑝 ‒ 𝑞)2

𝑝𝑞 ) +
𝑝𝑞
𝜋𝑙𝐵

(𝑑 ‒ 𝑘 '
𝑎) +

(𝜑 + 2𝑝)
4𝑎𝑝

(𝑑 ‒ 𝑘 '
𝑎)2 +

𝜉𝑝(𝜉𝑝 + 𝑘 '
𝑎)

2𝑎𝑝
(𝑎𝑝𝛾ℎ𝑏

𝑘𝑇
‒ 𝜔 ‒ 2𝑞) +

(𝜉𝑝 + 𝑘 '
𝑎)2

2𝑎𝑝 (𝜉2
𝑝

2

𝑑2𝜀 𝑝
𝑐ℎ𝑎𝑖𝑛

𝑑𝜉𝑝
2

+
𝑎𝑝𝛾ℎ𝑏

𝑘𝑇
‒ 𝜔 ‒ 2𝑞)

(S51)



Again, we have been able to eliminate terms with the parameter  by means of employing the 𝑘''
𝑎

equilibrium condition in Eq (S46). Analogous to the case with rigid surfactants, Eq (S51) may be 

further simplified by minimizing with respect to . However, it turns out that the chain 𝑘 '
𝑎

conformational entropy contribution tends to make the thickness  of the surfactant monolayer 

rather insensitive towards changes in curvature. As a result, Eq (S51) may be approximated with 

the expression valid for the special case of a monolayer that is bent at constant . For the latter 𝜉 = 𝜉𝑝

case  holds exactly true 2 and we may simplify Eq (S51) so as to give𝑘 '
𝑎 =‒ 𝜉𝑝

(S52)
( 𝑘𝑐

𝑘𝑇)𝑓𝑙𝑒𝑥 =
𝜅 ‒ 1

2𝜋𝑙𝐵
(1 ‒

2(𝑝 ‒ 𝑞)2

𝑝𝑞 ) +
𝑝𝑞
𝜋𝑙𝐵

(𝜉𝑝 + 𝑑) +
(𝜑 + 2𝑝)

4𝑎𝑝
(𝜉𝑝 + 𝑑)2

Combining Eqs (S41) and (S52) gives

(S53)
( 𝑘𝑐

𝑘𝑇)𝑓𝑙𝑒𝑥 = ( 𝑘𝑐

𝑘𝑇)𝑟𝑖𝑔𝑖𝑑 + ( 𝑝𝑞
𝜋𝑙𝐵

)2 𝑘𝑇
𝛾ℎ𝑏

(𝜔 + 2𝑞)
(𝜑 + 2𝑝)

+
𝑝𝑞
𝜋𝑙𝐵

(𝜉𝑝 + 𝑑) +
(𝜑 + 2𝑝)

4𝑎𝑝
(𝜉𝑝 + 𝑑)2

Analogous to the spontaneous curvature in Eq (S48), and in contrast to the case of surfactants with 

rigid tail,   depends strongly on p. Since all parameters in the second and third terms on (𝑘𝑐 𝑘𝑇)𝑓𝑙𝑒𝑥

the right hand side of Eq (S53) are positive quantities, we may conclude that

(S54)( 𝑘𝑐

𝑘𝑇)𝑓𝑙𝑒𝑥 > ( 𝑘𝑐

𝑘𝑇)𝑟𝑖𝑔𝑖𝑑

is always true.

Saddle Splay-constant

The chain conformational entropy contributions to the saddle-splay constant equals

(S55)
𝑘̅𝑐ℎ𝑎𝑖𝑛

𝑐 =
𝜉𝑝

𝑎𝑝

𝑑𝜀 𝑝
𝑐ℎ𝑎𝑖𝑛

𝑑𝜉𝑝
(𝑘'''

𝑎 ‒
𝜉2

𝑝

3 )
Summing Eqs (S12), (S21), (S28) and (S55) gives



(S56)( 𝑘̅𝑐

𝑘𝑇)𝑓𝑙𝑒𝑥 =‒
1

𝜋𝑙𝐵
[𝜅 ‒ 1𝐷1(ln (𝑆𝑝

2𝑞)) + 𝑑ln (𝑆𝑝

2𝑞)] ‒
𝜉2

𝑝

3 (𝛾ℎ𝑏

𝑘𝑇
‒

𝜔 + 2𝑞
𝑎𝑝

) ‒
𝑑2

2𝑎𝑝
(𝑞 +

2𝜔
3 )

where all terms including  have been eliminated with the equilibrium condition in Eq (S46).𝑘'''
𝑎

Combining Eqs (S43) and (S56) gives the following relation

(S57)( 𝑘̅𝑐

𝑘𝑇)𝑓𝑙𝑒𝑥 = ( 𝑘̅𝑐

𝑘𝑇)𝑟𝑖𝑔𝑖𝑑 ‒
𝜉2

𝑝

3 (𝛾ℎ𝑏

𝑘𝑇
‒

𝜔 + 2𝑞
𝑎𝑝

) = ( 𝑘̅𝑐

𝑘𝑇)𝑟𝑖𝑔𝑖𝑑 ‒
𝜉4

𝑝

3𝑣𝑘𝑇

𝑑𝜀 𝑝
𝑐ℎ𝑎𝑖𝑛

𝑑𝜉𝑝

between the saddle-splay constant for surfactants with rigid and flexible tail, respectively.



Model employed in the least squares fitting data analysis

The differential scattering cross section as a function of scattering vector q for a sample of weakly 

interacting monodisperse micelles with concentration n (number of micelles per unit volume) can 

be written as follows 7

(S58)
𝑑𝜎(𝑞)

𝑑Ω
= 𝑛(∆𝜌𝑐𝑜𝑟𝑒𝑉𝑐𝑜𝑟𝑒)2𝑃(𝑞)[1 + 𝛽(𝑞)(𝑆(𝑞) ‒ 1)]

The micelles were best fitted using a form factor P(q) for core-and-shell triaxial core-shell ellipsoids 

with half axes a, b and c of the core and a thickness d of the outer shell. In accordance, we may write 

the orientationally averaged form factor for a non-spherical micelle as

(S59)
𝑃(𝑞) = 〈𝐹2(𝑞)〉 =

2
𝜋

𝜋/2

∫
0

𝜋/2

∫
0

𝐹(𝑞,𝜙,𝜃)2sin 𝜙𝑑𝜙𝑑𝜃

where F is the amplitude of the form factor and

(S60)
𝛽(𝑞) =

〈𝐹(𝑞)〉2

〈𝐹2(𝑞)〉

where

(S61)
〈𝐹(𝑞)〉 =

2
𝜋

𝜋/2

∫
0

𝜋/2

∫
0

𝐹(𝑞,𝜙,𝜃)sin 𝜙𝑑𝜙𝑑𝜃

For a core-and-shell micelle we may write the amplitude as a sum of contributions from the core 

and the shell, respectively,

(S62)
𝐹(𝑞,𝜙,𝜃) = 𝐹𝑐𝑜𝑟𝑒(𝑞,𝜙,𝜃) + 𝜚

𝑉𝑠ℎ𝑒𝑙𝑙

𝑉𝑐𝑜𝑟𝑒
𝐹𝑠ℎ𝑒𝑙𝑙(𝑞,𝜙,𝜃)

where



(S63)
𝜚 =

Δ𝜌𝑠ℎ𝑒𝑙𝑙

Δ𝜌𝑐𝑜𝑟𝑒
 

and core and shell are the differences in scattering length densities between core and shell, 

respectively, and solvent. Vcore = V(a, b, c) is the volume of the core and Vshell = V(a + d, b + d, c + d)  

V(a, b, c) is the volume the outer shell.

The amplitude as a function of the radial distance r for a general ellipsoid with half axes a, b and c 

equals 8

(S64)𝐹𝑐𝑜𝑟𝑒(𝑞,𝑟(𝑎,𝑏,𝑐,𝜙,𝜃)) = 𝐹𝑠𝑝ℎ

where 

(S65)
𝐹𝑠𝑝ℎ =

3[sin (𝑞𝑟) ‒ 𝑞𝑟cos (𝑞𝑟)]

(𝑞𝑟)3

with

(S66) 𝑟(𝑎,𝑏,𝑐,𝜙,𝜃) = (𝑎2sin2 𝜃 + 𝑏2cos2 𝜃)sin2 𝜙 + 𝑐2cos2 𝜙

The corresponding quantity for the shell may be written as

(S67)
𝐹𝑠ℎ𝑒𝑙𝑙 =

𝑉𝑡𝑜𝑡𝐹𝑠𝑝ℎ(𝑞,𝑟(𝑎 + 𝑑,𝑏 + 𝑑,𝑐 + 𝑑,𝜙,𝜃)) ‒ 𝑉𝑐𝑜𝑟𝑒𝐹𝑠𝑝ℎ(𝑞,𝑟(𝑎,𝑏,𝑐,𝜙,𝜃))

𝑉𝑠ℎ𝑒𝑙𝑙

where Vtot = V(a + d, b + d, c + d) = Vcore + Vshell and

𝑟(𝑎 + 𝑑,𝑏 + 𝑑,𝑐 + 𝑑,𝜙,𝜃) = ((𝑎 + 𝑑)2sin2 𝜃 + (𝑏 + 𝑑)2cos2 𝜃)sin2 𝜙 + (𝑐 + 𝑑)2cos2 𝜙

(S68)



The parameters in the model were optimized by means of conventional least squares analysis, with 

the reformulation that, , was used as one common scale parameter. 7, 9 The  𝑎1 = 𝑛(∆𝜌𝑐𝑜𝑟𝑒𝑉𝑐𝑜𝑟𝑒)2

quality of the fits were measured in terms of the reduced chi-squared parameter defined as

(S69)
𝜒2 =

1
𝑁 ‒ 𝑀

𝑁

∑
𝑖 = 1

(𝐼𝑒𝑥𝑝(𝑞𝑖) ‒ 𝐼𝑚𝑜𝑑(𝑞𝑖)
𝜎𝑖 )2

where Iexp(qi) and Imod(qi) are the experimental and model intensities, respectively, at a scattering 

vector modulus qi, i is the statistical uncertainties on the data points, N is the total number of data 

points and M is the number of parameters optimized in the model fit. In the fitting analysis of rather 

small micelles formed at x = 0.25 and 0.50, we have used six fitting parameters (a, b, c, , mic, and 𝜚

zeff), in addition to the scaling parameter  and residual background scattering, 𝑎1 = 𝑛(∆𝜌𝑐𝑜𝑟𝑒𝑉𝑐𝑜𝑟𝑒)2

where mic is the volume fraction of micelles and zeff denotes the effective overall charge of the 

micelles. The latter two parameters were, however, seen to have little influence on the scattering 

behavior and could not be accurately determined from the model fitting analysis due to the high 

ionic strengths in the solutions (fixed to [NaCl] = 154 mM). The micelles formed at x = 0.75 were too 

large to determine their size from the SAXS data which were fitted using three parameters (a, b, and 

). The shell thickness d was fixed to 10 Å for all samples.𝜚

Contrast profile of three described in Table.1
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Figure S1: X-ray contrast profile between the core and shell of mixed NaDC-DMPC micelles at different compositions XPL and 
fixed total concentration [NaDC] + [DMPC] = 80 mM. The fitted SAXS curve has been shown in the article Fig.4.

The excess scattering length density of the core-and-shell has been normalized by the scattering 
length density of water. The radius that has been shown in the Fig.S1 is the minor axis of ellipsoidal 
micelles.
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