Supporting Information for:

Construction of a pH-sensitive self-assembly in aqueous solutions

based on a dansyl-modified β-cyclodextrin

Bing Jiang, Yu Liu, Linlin Zhao, Li Zhao,^{*} Ce Wang, Changyao Liu, Baocai Xu School of Light Industry, Beijing Technology and Business University, Beijing 100048, China. E-mail: zhaol@btbu.edu.cn.

Synthesis of βCD-C₆-Dns

 β CD-C₆-Dns was synthesized by the following procedure. β CD-C₆ was synthesized according to literature. [1] β CD-C₆ (0.123 g, 0.1mmol) and triethylamine (0.06 mL, 0.4 mmol) were dissolved into DMF (20 mL), and the mixture was cooled at -10°C. A dansyl (0.03 g, 0.1 mmol) solution in DMF (10 mL) was added dropwise into above solution. After the addition, the mixture was stirred for 2 h at -10°C and then for 5 h at room temperature. Acetone was added into the reaction mixture, and a light brown solid was precipitated. β CD-C₆-Dns was obtained after filtration. The product was characterized by HR-MS (Fig. S1) and ¹ HNMR (Fig. S2).

Fig. S1. FTMS result of β CD-C₆-Dns.

Fig.S2. ¹H NMR spectrum of β CD-C₆-Dns.

Fig. S3 The acid-base titration curve of β CD-C₆-Dns solution (0.1 mM).

Fig. S4 ¹H NMR spectra of β CD-C₆-Dns solution under various pH values.

Fig. S5 Species distribution resulting from β CD-C₆-Dns solution.

Fig. S6 TEM images of 1mM β CD-C₆-Dns solution (pH 8.5) after aging for 5d (a) and 14d (b), respectively. The bar= 500 nm.

Fig. S7 Time-dependent size distribution of β CD-C₆-Dns aggregates in 1 mM solution (pH 8.5).

Fig. S8 NOESY spectra of β CD-C₆-Dns solution at pH 6. 5 (a) and pH 4.6 (b).

рН	τ1/ns	A1/%	τ2/ns	A2/%	x ²
8.5	16.8	83.9	5.0	16.1	1.174
6.5	16.8	84.7	4.9	15.3	1.058
4.6	16.7	84.1	5.0	15.9	1.111
2.7	15.6	83.7	5.1	16.3	1.156

Table S1. The fluorescence lifetime of β CD-C₆-Dns solution.

Scheme S1. Proposed schematic representation of the packing manner of $\beta\text{CD-C}_{6^{\text{-}}}$

Dns vesicles.

Reference:

[1] T. Sun, H. Zhang, L. Kong, H. Qiao, Y. Li, F. Kin, A. Hao, Controlled transformation from nanorods to vesicles induced by cyclomaltoheptaoses (beta-cyclodextrins), Carbohydrate Research, 346 (2011) 285-293.