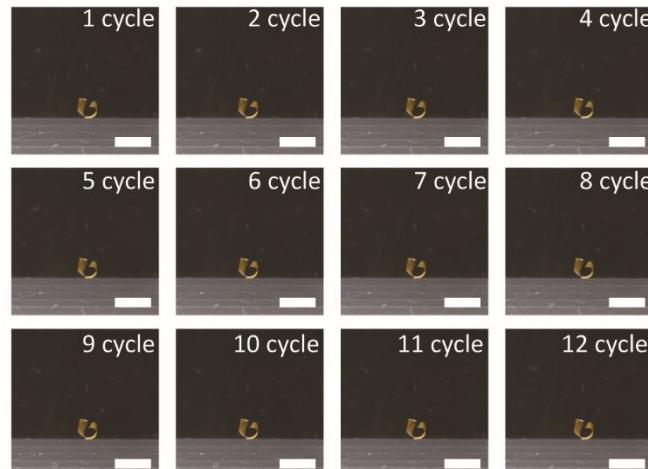


Supplementary Information

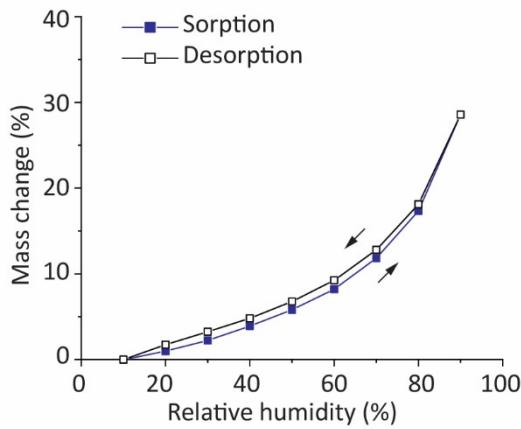
Tuning water-responsiveness with *Bombyx mori* silk-silica nanoparticle composites

Yeojin Jung^{a,b}, Samaneh Sharifi Golru^{a,c}, Tai-De Li^{b,d}, Elizabeth J. Biddinger^{a,c}, Raymond S. Tu^{a,b*}, and Xi Chen^{a,b,c,e*}

^aDepartment of Chemical Engineering, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA


^bAdvanced Science Research Center (ASRC) at the Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA

^cPh.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016 USA


^dDepartment of Physics at The City College of New York, City University of New York, 160 Convent Avenue, New York, NY 10031, USA

^ePh.D. Program in Physics, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016 USA

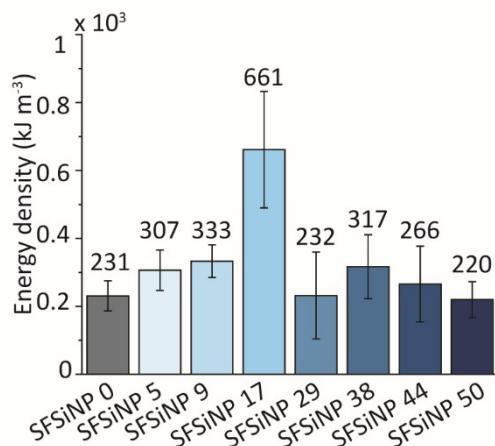

Supplementary Figures:

Fig. S1 The film with SFSiNP 17 reversibly bends when subjected to repeated changes in RH (10% -90% RH).

Fig. S2 DVS water sorption isotherm of SFSiNP 17 when RH is cycled between 10% and 90%.

Fig. S3 SFSiNP composites' WR energy densities with different SiNP's concentrations (0-50 vol%).

Legend for Supplementary Movies:

Movie S1. The film with SFSiNP 17 reversibly bends and straightens in response to RH changes between 10% and 90% (Playback speed: 10X).